Measurement incompatibility vs. Bell non-locality: an approach via
tensor norms
- URL: http://arxiv.org/abs/2205.12668v2
- Date: Fri, 23 Sep 2022 13:00:14 GMT
- Title: Measurement incompatibility vs. Bell non-locality: an approach via
tensor norms
- Authors: Faedi Loulidi, Ion Nechita
- Abstract summary: Violations of Bell inequalities require quantum entanglement and incompatibility of the measurements used by the two parties involved in the protocol.
We show that the CHSH inequality and its variants are the only ones satisfying it.
- Score: 1.5229257192293197
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Measurement incompatibility and quantum non-locality are two key features of
quantum theory. Violations of Bell inequalities require quantum entanglement
and incompatibility of the measurements used by the two parties involved in the
protocol. We analyze the converse question: for which Bell inequalities is the
incompatibility of measurements enough to ensure a quantum violation? We relate
the two questions by comparing two tensor norms on the space of dichotomic
quantum measurements: one characterizing measurement compatibility and the
second one characterizing violations of a given Bell inequality. We provide
sufficient conditions for the equivalence of the two notions in terms of the
matrix describing the correlation Bell inequality. We show that the CHSH
inequality and its variants are the only ones satisfying it.
Related papers
- Temporal Bell inequalities in a many-body system [0.0]
We show that a temporal Clauser-Horne inequality for two spins is violated for nonzero time interval between the measurements if the two measured parties are connected by a spin chain.
Our result suggests that, as expected in a many-body setup, the Lieb-Robinson bound substitutes the speed of light as the fundamental limit for the spreading of information.
arXiv Detail & Related papers (2024-09-25T19:00:47Z) - (Almost-)Quantum Bell Inequalities and Device-Independent Applications [3.7482527016282963]
We present families of (almost)quantum Bell inequalities and highlight three foundational and DI applications.
We derive quantum Bell inequalities that show a separation of the quantum boundary from certain portions of the no-signaling boundary of dimension up to 4k-8.
We provide the most precise characterization of the quantum boundary known so far.
arXiv Detail & Related papers (2023-09-12T15:13:02Z) - Entanglement quantification via nonlocality [1.3535770763481902]
Nonlocality, manifested by the violation of Bell inequalities, indicates quantum entanglement in the underlying system.
We quantify entanglement using a family of generalized Clauser-Horne-Shimony-Holt-type Bell inequalities.
arXiv Detail & Related papers (2023-03-15T07:16:46Z) - Bell inequalities with overlapping measurements [52.81011822909395]
We study Bell inequalities where measurements of different parties can have overlap.
This allows to accommodate problems in quantum information.
The scenarios considered show an interesting behaviour with respect to Hilbert space dimension, overlap, and symmetry.
arXiv Detail & Related papers (2023-03-03T18:11:05Z) - Incompatibility of observables, channels and instruments in information
theories [68.8204255655161]
We study the notion of compatibility for tests of an operational probabilistic theory.
We show that a theory admits of incompatible tests if and only if some information cannot be extracted without disturbance.
arXiv Detail & Related papers (2022-04-17T08:44:29Z) - Experimental violations of Leggett-Garg's inequalities on a quantum
computer [77.34726150561087]
We experimentally observe the violations of Leggett-Garg-Bell's inequalities on single and multi-qubit systems.
Our analysis highlights the limits of nowadays quantum platforms, showing that the above-mentioned correlation functions deviate from theoretical prediction as the number of qubits and the depth of the circuit grow.
arXiv Detail & Related papers (2021-09-06T14:35:15Z) - Quantum indistinguishability through exchangeable desirable gambles [69.62715388742298]
Two particles are identical if all their intrinsic properties, such as spin and charge, are the same.
Quantum mechanics is seen as a normative and algorithmic theory guiding an agent to assess her subjective beliefs represented as (coherent) sets of gambles.
We show how sets of exchangeable observables (gambles) may be updated after a measurement and discuss the issue of defining entanglement for indistinguishable particle systems.
arXiv Detail & Related papers (2021-05-10T13:11:59Z) - Graph-Theoretic Framework for Self-Testing in Bell Scenarios [37.067444579637076]
Quantum self-testing is the task of certifying quantum states and measurements using the output statistics solely.
We present a new approach for quantum self-testing in Bell non-locality scenarios.
arXiv Detail & Related papers (2021-04-27T08:15:01Z) - All two-party facet Bell inequalities are violated by Almost Quantum
correlations [0.13844779265721088]
We show that every tight Bell inequality is violated by 'Almost Quantum' correlations.
We exploit connections between Bell correlations and the graph-theoretic Lov'asz-theta set, discovered by Cabello-Severini-Winter.
We derive novel (almost) quantum Bell inequalities, which may be of independent interest for self-testing applications.
arXiv Detail & Related papers (2020-04-16T14:15:38Z) - Constructing Multipartite Bell inequalities from stabilizers [21.98685929768227]
We propose a systematical framework to construct Bell inequalities from stabilizers maximally violated by general stabilizer states.
We show that the constructed Bell inequalities can self-test any stabilizer state which is essentially device-independent.
Our framework can not only inspire more fruitful multipartite Bell inequalities from conventional verification methods, but also pave the way for their practical applications.
arXiv Detail & Related papers (2020-02-05T16:07:11Z) - Joint Measurability, Einstein-Podolsky-Rosen Steering, and Bell
Nonlocality [0.0]
We show that any set of measurements not jointly measurable can be used for demonstrating quantum nonlocality.
We also discuss the connection between Bell nonlocality and joint measurability, and give evidence that both notions are inequivalent.
arXiv Detail & Related papers (2014-06-26T18:45:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.