Train Flat, Then Compress: Sharpness-Aware Minimization Learns More
Compressible Models
- URL: http://arxiv.org/abs/2205.12694v1
- Date: Wed, 25 May 2022 11:54:37 GMT
- Title: Train Flat, Then Compress: Sharpness-Aware Minimization Learns More
Compressible Models
- Authors: Clara Na, Sanket Vaibhav Mehta, Emma Strubell
- Abstract summary: Pruning unnecessary parameters has emerged as a simple and effective method for compressing large models.
We show that optimizing for flat minima consistently leads to greater compressibility of parameters compared to standard Adam optimization.
- Score: 7.6356407698088
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Model compression by way of parameter pruning, quantization, or distillation
has recently gained popularity as an approach for reducing the computational
requirements of modern deep neural network models for NLP. Pruning unnecessary
parameters has emerged as a simple and effective method for compressing large
models that is compatible with a wide variety of contemporary off-the-shelf
hardware (unlike quantization), and that requires little additional training
(unlike distillation). Pruning approaches typically take a large, accurate
model as input, then attempt to discover a smaller subnetwork of that model
capable of achieving end-task accuracy comparable to the full model. Inspired
by previous work suggesting a connection between simpler, more generalizable
models and those that lie within flat basins in the loss landscape, we propose
to directly optimize for flat minima while performing task-specific pruning,
which we hypothesize should lead to simpler parameterizations and thus more
compressible models. In experiments combining sharpness-aware minimization with
both iterative magnitude pruning and structured pruning approaches, we show
that optimizing for flat minima consistently leads to greater compressibility
of parameters compared to standard Adam optimization when fine-tuning BERT
models, leading to higher rates of compression with little to no loss in
accuracy on the GLUE classification benchmark.
Related papers
- Fine-Tuning Image-Conditional Diffusion Models is Easier than You Think [53.2706196341054]
We show that the perceived inefficiency was caused by a flaw in the inference pipeline that has so far gone unnoticed.
We perform end-to-end fine-tuning on top of the single-step model with task-specific losses and get a deterministic model that outperforms all other diffusion-based depth and normal estimation models.
arXiv Detail & Related papers (2024-09-17T16:58:52Z) - PELA: Learning Parameter-Efficient Models with Low-Rank Approximation [16.9278983497498]
We propose a novel method for increasing the parameter efficiency of pre-trained models by introducing an intermediate pre-training stage.
This allows for direct and efficient utilization of the low-rank model for downstream fine-tuning tasks.
arXiv Detail & Related papers (2023-10-16T07:17:33Z) - Sparse Model Soups: A Recipe for Improved Pruning via Model Averaging [24.64264715041198]
We introduce Sparse Model Soups (SMS), a novel method for merging sparse models by initiating each prune-retrain cycle with the averaged model from the previous phase.
SMS preserves sparsity, exploits sparse network benefits, is modular and fully parallelizable, and substantially improves IMP's performance.
arXiv Detail & Related papers (2023-06-29T08:49:41Z) - Riemannian Low-Rank Model Compression for Federated Learning with
Over-the-Air Aggregation [2.741266294612776]
Low-rank model compression is a widely used technique for reducing the computational load when training machine learning models.
Existing compression techniques are not directly applicable to efficient over-the-air (OTA) aggregation in federated learning systems.
We propose a novel manifold optimization formulation for low-rank model compression in FL that does not relax the low-rank constraint.
arXiv Detail & Related papers (2023-06-04T18:32:50Z) - Fine-grained Retrieval Prompt Tuning [149.9071858259279]
Fine-grained Retrieval Prompt Tuning steers a frozen pre-trained model to perform the fine-grained retrieval task from the perspectives of sample prompt and feature adaptation.
Our FRPT with fewer learnable parameters achieves the state-of-the-art performance on three widely-used fine-grained datasets.
arXiv Detail & Related papers (2022-07-29T04:10:04Z) - CrAM: A Compression-Aware Minimizer [103.29159003723815]
We propose a new compression-aware minimizer dubbed CrAM that modifies the optimization step in a principled way.
CrAM produces dense models that can be more accurate than the standard SGD/Adam-based baselines, but which are stable under weight pruning.
CrAM can produce sparse models which perform well for transfer learning, and it also works for semi-structured 2:4 pruning patterns supported by GPU hardware.
arXiv Detail & Related papers (2022-07-28T16:13:28Z) - Structured Pruning Learns Compact and Accurate Models [28.54826400747667]
We propose a task-specific structured pruning method CoFi (Coarse- and Fine-grained Pruning)
CoFi delivers highly parallelizableworks and matches the distillation methods in both accuracy and latency.
Our experiments on GLUE and SQuAD datasets show that CoFi yields models with over 10x speedups with a small accuracy drop.
arXiv Detail & Related papers (2022-04-01T13:09:56Z) - Automatic Mixed-Precision Quantization Search of BERT [62.65905462141319]
Pre-trained language models such as BERT have shown remarkable effectiveness in various natural language processing tasks.
These models usually contain millions of parameters, which prevents them from practical deployment on resource-constrained devices.
We propose an automatic mixed-precision quantization framework designed for BERT that can simultaneously conduct quantization and pruning in a subgroup-wise level.
arXiv Detail & Related papers (2021-12-30T06:32:47Z) - Dynamic Model Pruning with Feedback [64.019079257231]
We propose a novel model compression method that generates a sparse trained model without additional overhead.
We evaluate our method on CIFAR-10 and ImageNet, and show that the obtained sparse models can reach the state-of-the-art performance of dense models.
arXiv Detail & Related papers (2020-06-12T15:07:08Z) - Extrapolation for Large-batch Training in Deep Learning [72.61259487233214]
We show that a host of variations can be covered in a unified framework that we propose.
We prove the convergence of this novel scheme and rigorously evaluate its empirical performance on ResNet, LSTM, and Transformer.
arXiv Detail & Related papers (2020-06-10T08:22:41Z) - Compression of descriptor models for mobile applications [26.498907514590165]
We evaluate the computational cost, model size, and matching accuracy tradeoffs for deep neural networks.
We observe a significant redundancy in the learned weights, which we exploit through the use of depthwise separable layers.
We propose the Convolution-Depthwise-Pointwise(CDP) layer, which provides a means of interpolating between the standard and depthwise separable convolutions.
arXiv Detail & Related papers (2020-01-09T17:00:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.