FineGates: LLMs Finetuning with Compression using Stochastic Gates
- URL: http://arxiv.org/abs/2412.12951v1
- Date: Tue, 17 Dec 2024 14:33:05 GMT
- Title: FineGates: LLMs Finetuning with Compression using Stochastic Gates
- Authors: Jonathan Svirsky, Yehonathan Refael, Ofir Lindenbaum,
- Abstract summary: Large Language Models (LLMs) present significant challenges for full finetuning due to the high computational demands.
Lightweight finetuning techniques have been proposed, like learning low-rank adapter layers.
We propose an adaptor model based on gates that simultaneously sparsify the frozen base model with task-specific adaptation.
- Score: 7.093692674858257
- License:
- Abstract: Large Language Models (LLMs), with billions of parameters, present significant challenges for full finetuning due to the high computational demands, memory requirements, and impracticality of many real-world applications. When faced with limited computational resources or small datasets, updating all model parameters can often result in overfitting. To address this, lightweight finetuning techniques have been proposed, like learning low-rank adapter layers. These methods aim to train only a few additional parameters combined with the base model, which remains frozen, reducing resource usage and mitigating overfitting risks. In this work, we propose an adaptor model based on stochastic gates that simultaneously sparsify the frozen base model with task-specific adaptation. Our method comes with a small number of trainable parameters and allows us to speed up the base model inference with competitive accuracy. We evaluate it in additional variants by equipping it with additional low-rank parameters and comparing it to several recent baselines. Our results show that the proposed method improves the finetuned model accuracy comparatively to the several baselines and allows the removal of up to 20-40\% without significant accuracy loss.
Related papers
- Training Deep Learning Models with Norm-Constrained LMOs [56.00317694850397]
We study optimization methods that leverage the linear minimization oracle (LMO) over a norm-ball.
We propose a new family of algorithms that uses the LMO to adapt to the geometry of the problem and, perhaps surprisingly, show that they can be applied to unconstrained problems.
arXiv Detail & Related papers (2025-02-11T13:10:34Z) - Hyper Compressed Fine-Tuning of Large Foundation Models with Quantum Inspired Adapters [0.0]
emphQuantum-Inspired Adapters, a PEFT approach inspired by Hamming-weight quantum circuits from quantum machine learning literature.
We test our proposed adapters by adapting large language models and large vision transformers on benchmark datasets.
arXiv Detail & Related papers (2025-02-10T13:06:56Z) - LoRTA: Low Rank Tensor Adaptation of Large Language Models [70.32218116940393]
Low Rank Adaptation (LoRA) is a popular Efficient Fine Tuning (PEFT) method.
We propose a higher-order Candecomp/Parafac (CP) decomposition, enabling a more compact and flexible representation.
Our method can achieve a reduction in the number of parameters while maintaining comparable performance.
arXiv Detail & Related papers (2024-10-05T06:59:50Z) - Propulsion: Steering LLM with Tiny Fine-Tuning [0.0]
We propose Propulsion, a novel parameter efficient fine-tuning (PEFT) method to optimize task-specific performance.
Inspired by the concept of controlled adjustments in physical motion, Propulsion selectively re-scales specific dimensions of a pre-trained model.
Our theoretical analysis, supported by Neural Tangent Kernel (NTK) theory, shows that Propulsion approximates the performance of full fine-tuning with far fewer trainable parameters.
arXiv Detail & Related papers (2024-09-17T06:51:59Z) - SaRA: High-Efficient Diffusion Model Fine-tuning with Progressive Sparse Low-Rank Adaptation [52.6922833948127]
In this work, we investigate the importance of parameters in pre-trained diffusion models.
We propose a novel model fine-tuning method to make full use of these ineffective parameters.
Our method enhances the generative capabilities of pre-trained models in downstream applications.
arXiv Detail & Related papers (2024-09-10T16:44:47Z) - SMILE: Zero-Shot Sparse Mixture of Low-Rank Experts Construction From Pre-Trained Foundation Models [85.67096251281191]
We present an innovative approach to model fusion called zero-shot Sparse MIxture of Low-rank Experts (SMILE) construction.
SMILE allows for the upscaling of source models into an MoE model without extra data or further training.
We conduct extensive experiments across diverse scenarios, such as image classification and text generation tasks, using full fine-tuning and LoRA fine-tuning.
arXiv Detail & Related papers (2024-08-19T17:32:15Z) - Scaling Exponents Across Parameterizations and Optimizers [94.54718325264218]
We propose a new perspective on parameterization by investigating a key assumption in prior work.
Our empirical investigation includes tens of thousands of models trained with all combinations of threes.
We find that the best learning rate scaling prescription would often have been excluded by the assumptions in prior work.
arXiv Detail & Related papers (2024-07-08T12:32:51Z) - PELA: Learning Parameter-Efficient Models with Low-Rank Approximation [16.9278983497498]
We propose a novel method for increasing the parameter efficiency of pre-trained models by introducing an intermediate pre-training stage.
This allows for direct and efficient utilization of the low-rank model for downstream fine-tuning tasks.
arXiv Detail & Related papers (2023-10-16T07:17:33Z) - Parameter-efficient Tuning of Large-scale Multimodal Foundation Model [68.24510810095802]
We propose A graceful prompt framework for cross-modal transfer (Aurora) to overcome these challenges.
Considering the redundancy in existing architectures, we first utilize the mode approximation to generate 0.1M trainable parameters to implement the multimodal prompt tuning.
A thorough evaluation on six cross-modal benchmarks shows that it not only outperforms the state-of-the-art but even outperforms the full fine-tuning approach.
arXiv Detail & Related papers (2023-05-15T06:40:56Z) - Online Probabilistic Model Identification using Adaptive Recursive MCMC [8.465242072268019]
We suggest the Adaptive Recursive Markov Chain Monte Carlo (ARMCMC) method.
It eliminates the shortcomings of conventional online techniques while computing the entire probability density function of model parameters.
We demonstrate our approach using parameter estimation in a soft bending actuator and the Hunt-Crossley dynamic model.
arXiv Detail & Related papers (2022-10-23T02:06:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.