論文の概要: SIoU Loss: More Powerful Learning for Bounding Box Regression
- arxiv url: http://arxiv.org/abs/2205.12740v1
- Date: Wed, 25 May 2022 12:46:21 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-26 13:47:22.184203
- Title: SIoU Loss: More Powerful Learning for Bounding Box Regression
- Title(参考訳): SIoUの損失: ボックス回帰をバウンディングするための強力な学習
- Authors: Zhora Gevorgyan
- Abstract要約: 損失関数SIoUが提案され、所望の回帰のベクトルの角度を考慮してペナルティ指標が再定義された。
従来のニューラルネットワークやデータセットに適用すると、SIoUはトレーニングの速度と推論の精度の両方を改善する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The effectiveness of Object Detection, one of the central problems in
computer vision tasks, highly depends on the definition of the loss function -
a measure of how accurately your ML model can predict the expected outcome.
Conventional object detection loss functions depend on aggregation of metrics
of bounding box regression such as the distance, overlap area and aspect ratio
of the predicted and ground truth boxes (i.e. GIoU, CIoU, ICIoU etc). However,
none of the methods proposed and used to date considers the direction of the
mismatch between the desired ground box and the predicted, "experimental" box.
This shortage results in slower and less effective convergence as the predicted
box can "wander around" during the training process and eventually end up
producing a worse model. In this paper a new loss function SIoU was suggested,
where penalty metrics were redefined considering the angle of the vector
between the desired regression. Applied to conventional Neural Networks and
datasets it is shown that SIoU improves both the speed of training and the
accuracy of the inference. The effectiveness of the proposed loss function was
revealed in a number of simulations and tests.
- Abstract(参考訳): コンピュータビジョンタスクにおける中心的な問題の1つであるオブジェクト検出の有効性は、あなたのMLモデルが期待される結果をどれだけ正確に予測できるかの損失関数尺度の定義に大きく依存する。
従来の物体検出損失関数は、予測された真理ボックスと地上の真理ボックス(giou、ciou、iciouなど)の距離、重なり領域、アスペクト比などの境界ボックス回帰のメトリクスの集約に依存する。
しかし、提案され、今日まで使用されている手法は、所望のグランドボックスと予測された「実験」ボックスとのミスマッチの方向を考慮しない。
この不足は、予測されたボックスがトレーニングプロセス中に「動き回る」ことができ、最終的にはより悪いモデルを生成するため、遅く、より効果的でない収束をもたらす。
本稿では,新たな損失関数SIoUを提案する。そこでは,所望の回帰のベクトルの角度を考慮したペナルティ指標を再定義する。
従来のニューラルネットワークやデータセットに適用すると、SIoUはトレーニングの速度と推論の精度の両方を改善している。
提案する損失関数の有効性は,いくつかのシミュレーションや実験で明らかにされた。
関連論文リスト
- MPDIoU: A Loss for Efficient and Accurate Bounding Box Regression [0.0]
本稿では,新しい境界ボックス類似度比較基準MPDIoUを提案する。
MPDIoU損失関数は、最先端のインスタンスセグメンテーション(YOLACT)やPASCAL VOC、MS COCO、IIIT5kで訓練されたオブジェクト検出(YOLOv7)モデルに適用される。
論文 参考訳(メタデータ) (2023-07-14T23:54:49Z) - Uncovering the Missing Pattern: Unified Framework Towards Trajectory
Imputation and Prediction [60.60223171143206]
軌道予測は、観測されたシーケンスから実体運動や人間の行動を理解する上で重要な作業である。
現在の方法では、観測されたシーケンスが完了したと仮定し、欠落した値の可能性を無視する。
本稿では,グラフに基づく条件変動リカレントニューラルネットワーク (GC-VRNN) の統一フレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-28T14:27:27Z) - Bridging Precision and Confidence: A Train-Time Loss for Calibrating
Object Detection [58.789823426981044]
本稿では,境界ボックスのクラス信頼度を予測精度に合わせることを目的とした,新たな補助損失定式化を提案する。
その結果,列車の走行時間損失はキャリブレーション基準を超過し,キャリブレーション誤差を低減させることがわかった。
論文 参考訳(メタデータ) (2023-03-25T08:56:21Z) - Fast Exploration of the Impact of Precision Reduction on Spiking Neural
Networks [63.614519238823206]
ターゲットハードウェアがコンピューティングの端に達すると、スパイキングニューラルネットワーク(SNN)が実用的な選択となる。
我々は、近似誤差を伝播するそのようなモデルの能力を生かした探索手法を開発するために、インターヴァル算術(IA)モデルを用いる。
論文 参考訳(メタデータ) (2022-11-22T15:08:05Z) - Adaptive Self-supervision Algorithms for Physics-informed Neural
Networks [59.822151945132525]
物理情報ニューラルネットワーク(PINN)は、損失関数のソフト制約として問題領域からの物理的知識を取り入れている。
これらのモデルの訓練性に及ぼす座標点の位置の影響について検討した。
モデルがより高い誤りを犯している領域に対して、より多くのコロケーションポイントを段階的に割り当てる適応的コロケーション方式を提案する。
論文 参考訳(メタデータ) (2022-07-08T18:17:06Z) - Mixing between the Cross Entropy and the Expectation Loss Terms [89.30385901335323]
クロスエントロピー損失は、トレーニング中にサンプルを分類するのが難しくなる傾向にある。
最適化目標に期待損失を加えることで,ネットワークの精度が向上することを示す。
実験により,新しいトレーニングプロトコルにより,多様な分類領域における性能が向上することが示された。
論文 参考訳(メタデータ) (2021-09-12T23:14:06Z) - A Novel Regression Loss for Non-Parametric Uncertainty Optimization [7.766663822644739]
不確実性の定量化は、安全な機械学習を確立する最も有望なアプローチの1つである。
これまでの最も一般的なアプローチの1つはモンテカルロドロップアウトで、計算量的に安価で、実際に簡単に適用できる。
この問題に対処するため,第2モーメント損失(UCI)と呼ばれる新たな目標を提案する。
論文 参考訳(メタデータ) (2021-01-07T19:12:06Z) - Second-Moment Loss: A Novel Regression Objective for Improved
Uncertainties [7.766663822644739]
不確実性の定量化は、安全な機械学習を確立する最も有望なアプローチの1つである。
これまでの最も一般的なアプローチの1つはモンテカルロドロップアウトで、計算量的に安価で、実際に簡単に適用できる。
この問題に対処するため,第2モーメント損失(UCI)と呼ばれる新たな目標を提案する。
論文 参考訳(メタデータ) (2020-12-23T14:17:33Z) - Optimized Loss Functions for Object detection: A Case Study on Nighttime
Vehicle Detection [0.0]
本稿では,2つの損失関数を同時に分類と局所化に最適化する。
本研究は, 正試料の局在化精度向上のためにのみ相関が適用されている既存研究と比較して, 相関を利用して真に硬い負試料を得る。
MIoUと呼ばれる新しい局所化損失は、予測ボックスとターゲットボックスの間のマハラノビス距離を組み込むことで、DIoU損失の勾配の不整合を解消する。
論文 参考訳(メタデータ) (2020-11-11T03:00:49Z) - $\sigma^2$R Loss: a Weighted Loss by Multiplicative Factors using
Sigmoidal Functions [0.9569316316728905]
我々は,二乗還元損失(sigma2$R損失)と呼ばれる新たな損失関数を導入する。
我々の損失は明らかな直観と幾何学的解釈を持ち、我々の提案の有効性を実験によって実証する。
論文 参考訳(メタデータ) (2020-09-18T12:34:40Z) - Learning a Unified Sample Weighting Network for Object Detection [113.98404690619982]
地域サンプリングや重み付けは、現代の地域ベースの物体検出器の成功に極めて重要である。
サンプル重み付けはデータ依存でタスク依存であるべきだと我々は主張する。
サンプルのタスク重みを予測するための統一的なサンプル重み付けネットワークを提案する。
論文 参考訳(メタデータ) (2020-06-11T16:19:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。