Machine learning method for return direction forecasting of Exchange
Traded Funds using classification and regression models
- URL: http://arxiv.org/abs/2205.12746v1
- Date: Wed, 25 May 2022 12:54:46 GMT
- Title: Machine learning method for return direction forecasting of Exchange
Traded Funds using classification and regression models
- Authors: Raphael P. B. Piovezan, Pedro Paulo de Andrade Junior
- Abstract summary: This article aims to propose and apply a machine learning method to analyze the direction of returns from Exchange Traded Funds (ETFs)
Regression and classification models were applied, using standard datasets from Brazilian and American markets.
In terms of risk and return, the models mostly performed better than the control metrics.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This article aims to propose and apply a machine learning method to analyze
the direction of returns from Exchange Traded Funds (ETFs) using the historical
return data of its components, helping to make investment strategy decisions
through a trading algorithm. In methodological terms, regression and
classification models were applied, using standard datasets from Brazilian and
American markets, in addition to algorithmic error metrics. In terms of
research results, they were analyzed and compared to those of the Na\"ive
forecast and the returns obtained by the buy & hold technique in the same
period of time. In terms of risk and return, the models mostly performed better
than the control metrics, with emphasis on the linear regression model and the
classification models by logistic regression, support vector machine (using the
LinearSVC model), Gaussian Naive Bayes and K-Nearest Neighbors, where in
certain datasets the returns exceeded by two times and the Sharpe ratio by up
to four times those of the buy & hold control model.
Related papers
- Q-value Regularized Transformer for Offline Reinforcement Learning [70.13643741130899]
We propose a Q-value regularized Transformer (QT) to enhance the state-of-the-art in offline reinforcement learning (RL)
QT learns an action-value function and integrates a term maximizing action-values into the training loss of Conditional Sequence Modeling (CSM)
Empirical evaluations on D4RL benchmark datasets demonstrate the superiority of QT over traditional DP and CSM methods.
arXiv Detail & Related papers (2024-05-27T12:12:39Z) - Regression-aware Inference with LLMs [52.764328080398805]
We show that an inference strategy can be sub-optimal for common regression and scoring evaluation metrics.
We propose alternate inference strategies that estimate the Bayes-optimal solution for regression and scoring metrics in closed-form from sampled responses.
arXiv Detail & Related papers (2024-03-07T03:24:34Z) - RVRAE: A Dynamic Factor Model Based on Variational Recurrent Autoencoder
for Stock Returns Prediction [5.281288833470249]
RVRAE is a probabilistic approach that addresses the temporal dependencies and noise in market data.
It is adept at risk modeling in volatile stock markets, estimating variances from latent space distributions while also predicting returns.
arXiv Detail & Related papers (2024-03-04T21:48:32Z) - Comparative Analysis of Linear Regression, Gaussian Elimination, and LU
Decomposition for CT Real Estate Purchase Decisions [0.0]
Three algorithms were evaluated for predicting the advisability of buying a house in the State of Connecticut.
Linear Regression and LU Decomposition provided the most reliable recommendations.
By evaluating model efficacy through metrics such as R-squared scores and Mean Squared Error, we provide a nuanced understanding of each method's strengths and weaknesses.
arXiv Detail & Related papers (2023-11-22T15:35:56Z) - Commodities Trading through Deep Policy Gradient Methods [0.0]
It formulates the commodities trading problem as a continuous, discrete-time dynamical system.
Two policy algorithms, namely actor-based and actor-critic-based approaches, are introduced.
Backtesting on front-month natural gas futures demonstrates that DRL models increase the Sharpe ratio by $83%$ compared to the buy-and-hold baseline.
arXiv Detail & Related papers (2023-08-10T17:21:12Z) - HireVAE: An Online and Adaptive Factor Model Based on Hierarchical and
Regime-Switch VAE [113.47287249524008]
It is still an open question to build a factor model that can conduct stock prediction in an online and adaptive setting.
We propose the first deep learning based online and adaptive factor model, HireVAE, at the core of which is a hierarchical latent space that embeds the relationship between the market situation and stock-wise latent factors.
Across four commonly used real stock market benchmarks, the proposed HireVAE demonstrate superior performance in terms of active returns over previous methods.
arXiv Detail & Related papers (2023-06-05T12:58:13Z) - Application of supervised learning models in the Chinese futures market [0.0]
This paper builds a supervised learning model to predict the trend of futures prices and then designs a trading strategy based on the prediction results.
The Precision, Recall and F1-score of the classification problem show that our model can meet the accuracy requirements for the classification of futures price movements.
arXiv Detail & Related papers (2023-03-08T13:56:53Z) - Optimizing Stock Option Forecasting with the Assembly of Machine
Learning Models and Improved Trading Strategies [9.553857741758742]
This paper introduced key aspects of applying Machine Learning (ML) models, improved trading strategies, and the Quasi-Reversibility Method (QRM) to optimize stock option forecasting and trading results.
arXiv Detail & Related papers (2022-11-29T04:01:16Z) - Federated Learning Aggregation: New Robust Algorithms with Guarantees [63.96013144017572]
Federated learning has been recently proposed for distributed model training at the edge.
This paper presents a complete general mathematical convergence analysis to evaluate aggregation strategies in a federated learning framework.
We derive novel aggregation algorithms which are able to modify their model architecture by differentiating client contributions according to the value of their losses.
arXiv Detail & Related papers (2022-05-22T16:37:53Z) - Regression Bugs Are In Your Model! Measuring, Reducing and Analyzing
Regressions In NLP Model Updates [68.09049111171862]
This work focuses on quantifying, reducing and analyzing regression errors in the NLP model updates.
We formulate the regression-free model updates into a constrained optimization problem.
We empirically analyze how model ensemble reduces regression.
arXiv Detail & Related papers (2021-05-07T03:33:00Z) - Topology-based Clusterwise Regression for User Segmentation and Demand
Forecasting [63.78344280962136]
Using a public and a novel proprietary data set of commercial data, this research shows that the proposed system enables analysts to both cluster their user base and plan demand at a granular level.
This work seeks to introduce TDA-based clustering of time series and clusterwise regression with matrix factorization methods as viable tools for the practitioner.
arXiv Detail & Related papers (2020-09-08T12:10:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.