論文の概要: NECA: Network-Embedded Deep Representation Learning for Categorical Data
- arxiv url: http://arxiv.org/abs/2205.12752v1
- Date: Wed, 25 May 2022 13:01:12 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-26 13:40:19.083734
- Title: NECA: Network-Embedded Deep Representation Learning for Categorical Data
- Title(参考訳): NECA:カテゴリーデータのためのネットワーク組み込み深層表現学習
- Authors: Xiaonan Gao, Sen Wu, Wenjun Zhou
- Abstract要約: NECAは分類データの深層表現学習法である。
属性値の間に固有の関係を深く埋め込んで、数値ベクトル表現でデータオブジェクトを明示的に表現します。
- 参考スコア(独自算出の注目度): 6.592626309043715
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose NECA, a deep representation learning method for categorical data.
Built upon the foundations of network embedding and deep unsupervised
representation learning, NECA deeply embeds the intrinsic relationship among
attribute values and explicitly expresses data objects with numeric vector
representations. Designed specifically for categorical data, NECA can support
important downstream data mining tasks, such as clustering. Extensive
experimental analysis demonstrated the effectiveness of NECA.
- Abstract(参考訳): 分類データの深層表現学習手法NECAを提案する。
NECAは、ネットワーク埋め込みと深い教師なし表現学習の基礎の上に構築され、属性値間の固有の関係を深く埋め込み、数値ベクトル表現でデータオブジェクトを明示的に表現する。
カテゴリデータ用に特別に設計されたNECAは、クラスタリングなどの重要な下流データマイニングタスクをサポートすることができる。
NECAの有効性を実験的に明らかにした。
関連論文リスト
- Supervised Gradual Machine Learning for Aspect Category Detection [0.9857683394266679]
アスペクトカテゴリー検出(ACD)は、あるレビュー文の中で暗黙的かつ明示的な側面を識別することを目的としている。
本稿では,Deep Neural Networks (DNN) と Gradual Machine Learning (GML) を教師付き環境で組み合わせることで,ACDタスクに取り組む新しい手法を提案する。
論文 参考訳(メタデータ) (2024-04-08T07:21:46Z) - XAI for Self-supervised Clustering of Wireless Spectrum Activity [0.5809784853115825]
本稿では,深層クラスタリング,自己教師型学習アーキテクチャの方法論を提案する。
表現学習部では,入力データの関心領域の解釈にガイドバックプロパゲーションを用いる。
クラスタリングの部分は、クラスタリングの結果を説明するために、Shallow Treesに依存しています。
最後に、データ固有の視覚化部は、各クラスタと入力データとの接続を関連機能をトラフすることを可能にする。
論文 参考訳(メタデータ) (2023-05-17T08:56:43Z) - Scalable Neural Data Server: A Data Recommender for Transfer Learning [70.06289658553675]
転送学習は、下流のパフォーマンスを改善するために追加データを活用する一般的な戦略である。
Nerve Data Server (NDS)は、特定の下流タスクに関連するデータを推奨する検索エンジンで、この問題に対処するためにこれまで提案されていた。
NDSは、データソースでトレーニングされた専門家の混合物を使用して、各ソースと下流タスクの類似性を推定する。
SNDSは、中間データセットに近接して、データソースと下流タスクの両方を表現します。
論文 参考訳(メタデータ) (2022-06-19T12:07:32Z) - MINER: Improving Out-of-Vocabulary Named Entity Recognition from an
Information Theoretic Perspective [57.19660234992812]
NERモデルは標準のNERベンチマークで有望な性能を達成した。
近年の研究では、従来のアプローチはエンティティ参照情報に過度に依存し、OoV(out-of-vocabulary)エンティティ認識の性能が劣っていることが示されている。
我々は、情報理論の観点からこの問題を改善するための新しいNER学習フレームワークであるMINERを提案する。
論文 参考訳(メタデータ) (2022-04-09T05:18:20Z) - Neural Topic Modeling with Deep Mutual Information Estimation [23.474848535821994]
本稿では,深い相互情報推定を取り入れたニューラルトピックモデルを提案する。
NTM-DMIEはトピック学習のためのニューラルネットワーク手法である。
我々はNTM-DMIEをテキストクラスタリングの精度、トピック表現、トピック一意性、トピックコヒーレンスなどの指標で評価する。
論文 参考訳(メタデータ) (2022-03-12T01:08:10Z) - Network Comparison Study of Deep Activation Feature Discriminability
with Novel Objects [0.5076419064097732]
最先端のコンピュータビジョンアルゴリズムは、Deep Neural Networks(DNN)を特徴抽出に取り入れ、Deep Convolutional Activation Features(DeCAF)を作成する。
本研究では、6つの主要な視覚認識DNNアーキテクチャのDeCAF空間に符号化された新しい物体の視覚的外観の一般的な識別可能性について分析する。
論文 参考訳(メタデータ) (2022-02-08T07:40:53Z) - DeepSatData: Building large scale datasets of satellite images for
training machine learning models [77.17638664503215]
本稿では,機械学習モデルの学習のための衛星画像データセットの自動生成のための設計検討を行う。
本稿では,ニューラルネットワークの深層学習と評価の観点から直面する課題について論じる。
論文 参考訳(メタデータ) (2021-04-28T15:13:12Z) - Deep Fusion Clustering Network [38.540761683389135]
深層クラスタリングのための深層フュージョンクラスタリングネットワーク(DFCN)を提案する。
本ネットワークでは,オートエンコーダとグラフオートエンコーダが学習した表現を明示的にマージするために,相互依存学習に基づく構造化と属性情報融合(SAIF)モジュールを提案する。
6つのベンチマークデータセットの実験により、提案されたDFCNは最先端のディープクラスタリング手法よりも一貫して優れていることが示された。
論文 参考訳(メタデータ) (2020-12-15T09:37:59Z) - Deep N-ary Error Correcting Output Codes [66.15481033522343]
Ecoror Correcting Output Codes (ECOC) のようなデータ非依存のアンサンブル手法が注目を集めている。
N-ary ECOCは、元の多クラス分類問題を、独立した単純な分類サブプロブレムのシリーズに分解する。
深部N-ary ECOCのためのパラメータ共有アーキテクチャの3つのバリエーションを提案する。
論文 参考訳(メタデータ) (2020-09-22T11:35:03Z) - Shifu2: A Network Representation Learning Based Model for
Advisor-advisee Relationship Mining [82.75996880087747]
本稿では,ネットワーク表現学習(NRL)に基づく新しいモデル,すなわちshifu2を提案する。
Shifu2は、コラボレーションネットワークを入力とし、特定アドバイザ・アドバイザー関係を出力とする。
そこで我々は,Shifu2を利用した大規模学術系譜データセットを作成した。
論文 参考訳(メタデータ) (2020-08-17T05:40:06Z) - Relation-Guided Representation Learning [53.60351496449232]
本稿では,サンプル関係を明示的にモデル化し,活用する表現学習手法を提案する。
私たちのフレームワークは、サンプル間の関係をよく保存します。
サンプルをサブスペースに埋め込むことにより,本手法が大規模なサンプル外問題に対処可能であることを示す。
論文 参考訳(メタデータ) (2020-07-11T10:57:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。