論文の概要: Tight Lower Bounds on Worst-Case Guarantees for Zero-Shot Learning with
Attributes
- arxiv url: http://arxiv.org/abs/2205.13068v1
- Date: Wed, 25 May 2022 22:30:33 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-28 08:58:27.568020
- Title: Tight Lower Bounds on Worst-Case Guarantees for Zero-Shot Learning with
Attributes
- Title(参考訳): 属性付きゼロショット学習における最悪の場合保証の厳格な下限
- Authors: Alessio Mazzetto, Cristina Menghini, Andrew Yuan, Eli Upfal, Stephen
H. Bach
- Abstract要約: 属性を用いたゼロショット学習の厳密な分析法を開発した。
我々は,標準ゼロショット手法が実際にどのように振る舞うかを予測できることを示す。
- 参考スコア(独自算出の注目度): 12.022775363029218
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We develop a rigorous mathematical analysis of zero-shot learning with
attributes. In this setting, the goal is to label novel classes with no
training data, only detectors for attributes and a description of how those
attributes are correlated with the target classes, called the class-attribute
matrix. We develop the first non-trivial lower bound on the worst-case error of
the best map from attributes to classes for this setting, even with perfect
attribute detectors. The lower bound characterizes the theoretical intrinsic
difficulty of the zero-shot problem based on the available information -- the
class-attribute matrix -- and the bound is practically computable from it. Our
lower bound is tight, as we show that we can always find a randomized map from
attributes to classes whose expected error is upper bounded by the value of the
lower bound. We show that our analysis can be predictive of how standard
zero-shot methods behave in practice, including which classes will likely be
confused with others.
- Abstract(参考訳): 属性を用いたゼロショット学習の厳密な数学的解析法を開発した。
この設定では、トレーニングデータなしで新しいクラスをラベル付けし、属性の検出器のみを指定し、それらの属性がクラス属性行列と呼ばれるターゲットクラスとどのように相関するかを説明する。
この設定のための属性からクラスへの最善のマップの最悪のケースエラーに対する最初の非自明な下限を、完璧な属性検出器でも開発する。
下限は利用可能な情報 -- クラス属性行列 -- に基づいてゼロショット問題の理論的本質的難易度を特徴づけ、その境界は実質的に計算可能である。
我々の下限はきついので、期待される誤差が下限の値によって上限となるクラスへの属性から常にランダム化された写像を見つけることができる。
我々は,標準ゼロショットメソッドが実際にどのように振る舞うかを,分析によって予測できることを示し,どのクラスが他のクラスと混同されるかを示す。
関連論文リスト
- Causal Effect Regularization: Automated Detection and Removal of
Spurious Attributes [13.852987916253685]
多くの分類データセットでは、タスクラベルはいくつかの入力属性と突発的に相関している。
本稿では,ラベルに対する因果関係を推定することにより,スプリアス属性を自動的に識別する手法を提案する。
本手法は, 因果効果のノイズ評価においても, 突発性特性への依存を緩和する。
論文 参考訳(メタデータ) (2023-06-19T17:17:42Z) - Exploiting Semantic Attributes for Transductive Zero-Shot Learning [97.61371730534258]
ゼロショット学習は、視覚的特徴と、そのクラスから学んだ意味的属性の関係を一般化することにより、目に見えないクラスを認識することを目的としている。
本稿では,未知データの意味的属性を生成し,生成過程に付加する新しいZSL法を提案する。
5つの標準ベンチマーク実験により,本手法がゼロショット学習の最先端結果をもたらすことが示された。
論文 参考訳(メタデータ) (2023-03-17T09:09:48Z) - Characterizing the Optimal 0-1 Loss for Multi-class Classification with
a Test-time Attacker [57.49330031751386]
我々は,任意の離散データセット上の複数クラス分類器に対するテスト時間攻撃の存在下での損失に対する情報理論的下位境界を求める。
本稿では,データと敵対的制約から競合ハイパーグラフを構築する際に発生する最適0-1損失を求めるための一般的なフレームワークを提供する。
論文 参考訳(メタデータ) (2023-02-21T15:17:13Z) - Polar Encoding: A Simple Baseline Approach for Classification with Missing Values [1.7205106391379026]
polar エンコーディングは $[0,1]$-valued 属性の表現で、値が欠けている。
計算を必要とせず、欠落した値が非欠落値と等価であることを保証し、決定木アルゴリズムに欠落した値を分割する方法を選択させる。
結果として得られた分類性能において、極符号化は最先端の戦略である「連鎖方程式による多重計算」や「復号化オートエンコーダによる多重計算」よりも優れた性能を示すことを示す。
論文 参考訳(メタデータ) (2022-10-04T20:56:24Z) - Spread Spurious Attribute: Improving Worst-group Accuracy with Spurious
Attribute Estimation [72.92329724600631]
本稿では,最悪のグループ精度を向上させるために,疑似属性に基づくアルゴリズムSpread Spurious Attributeを提案する。
各種ベンチマークデータセットに対する実験により,アルゴリズムはベースライン法より一貫して優れていることが示された。
また,提案したSSAは,フル (100%) のスプリアス特性監視を用いた手法に匹敵する性能を達成できることを実証した。
論文 参考訳(メタデータ) (2022-04-05T09:08:30Z) - Make an Omelette with Breaking Eggs: Zero-Shot Learning for Novel
Attribute Synthesis [65.74825840440504]
我々は,ZSLA(Zero Shot Learning for Attributes)を提案する。
提案手法は,新しい属性の検出器をゼロショット学習方式で合成することができる。
提案手法は,Caltech-UCSD Birds-200-2011データセット上の32個の属性のみを用いて,他の207個の新しい属性を合成することができる。
論文 参考訳(メタデータ) (2021-11-28T15:45:54Z) - Risk Bounds for Over-parameterized Maximum Margin Classification on
Sub-Gaussian Mixtures [100.55816326422773]
線形分類問題に対する最大マージン分類器の現象について検討する。
その結果、良性的なオーバーフィットが起きる条件を正確に特徴づけます。
論文 参考訳(メタデータ) (2021-04-28T08:25:16Z) - Theoretical Insights Into Multiclass Classification: A High-dimensional
Asymptotic View [82.80085730891126]
線形多クラス分類の最初の現代的精度解析を行う。
分析の結果,分類精度は分布に依存していることがわかった。
得られた洞察は、他の分類アルゴリズムの正確な理解の道を開くかもしれない。
論文 参考訳(メタデータ) (2020-11-16T05:17:29Z) - Explaining Predictions by Approximating the Local Decision Boundary [3.60160227126201]
局所決定境界近似(DBA)の新しい手法を提案する。
我々は変分オートエンコーダを訓練し、符号化されたデータ表現のユークリッド潜在空間を学習する。
我々は属性アノテーションを利用して、潜在空間をユーザにとって意味のある属性にマッピングします。
論文 参考訳(メタデータ) (2020-06-14T19:12:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。