Analyzing the Latent Space of GAN through Local Dimension Estimation
- URL: http://arxiv.org/abs/2205.13182v2
- Date: Wed, 26 Apr 2023 13:50:58 GMT
- Title: Analyzing the Latent Space of GAN through Local Dimension Estimation
- Authors: Jaewoong Choi, Geonho Hwang, Hyunsoo Cho, Myungjoo Kang
- Abstract summary: style-based GANs (StyleGANs) in high-fidelity image synthesis have motivated research to understand the semantic properties of their latent spaces.
We propose a local dimension estimation algorithm for arbitrary intermediate layers in a pre-trained GAN model.
Our proposed metric, called Distortion, measures an inconsistency of intrinsic space on the learned latent space.
- Score: 4.688163910878411
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The impressive success of style-based GANs (StyleGANs) in high-fidelity image
synthesis has motivated research to understand the semantic properties of their
latent spaces. In this paper, we approach this problem through a geometric
analysis of latent spaces as a manifold. In particular, we propose a local
dimension estimation algorithm for arbitrary intermediate layers in a
pre-trained GAN model. The estimated local dimension is interpreted as the
number of possible semantic variations from this latent variable. Moreover,
this intrinsic dimension estimation enables unsupervised evaluation of
disentanglement for a latent space. Our proposed metric, called Distortion,
measures an inconsistency of intrinsic tangent space on the learned latent
space. Distortion is purely geometric and does not require any additional
attribute information. Nevertheless, Distortion shows a high correlation with
the global-basis-compatibility and supervised disentanglement score. Our work
is the first step towards selecting the most disentangled latent space among
various latent spaces in a GAN without attribute labels.
Related papers
- Deep spatial context: when attention-based models meet spatial
regression [8.90978723839271]
'Deep spatial context' (DSCon) method serves for investigation of the attention-based vision models using the concept of spatial context.
It was inspired by histopathologists, however, the method can be applied to various domains.
arXiv Detail & Related papers (2024-01-18T15:08:42Z) - Discovering Class-Specific GAN Controls for Semantic Image Synthesis [73.91655061467988]
We propose a novel method for finding spatially disentangled class-specific directions in the latent space of pretrained SIS models.
We show that the latent directions found by our method can effectively control the local appearance of semantic classes.
arXiv Detail & Related papers (2022-12-02T21:39:26Z) - Finding the global semantic representation in GAN through Frechet Mean [4.688163910878411]
We propose an unsupervised method for finding this global semantic basis in the intermediate latent space in GANs.
The proposed global basis, called Fr'echet basis, is derived by introducing Fr'echet mean to the local semantic perturbations in a latent space.
Experimental results demonstrate that Fr'echet basis provides better semantic factorization and robustness compared to the previous methods.
arXiv Detail & Related papers (2022-10-11T15:01:25Z) - Intrinsic dimension estimation for discrete metrics [65.5438227932088]
In this letter we introduce an algorithm to infer the intrinsic dimension (ID) of datasets embedded in discrete spaces.
We demonstrate its accuracy on benchmark datasets, and we apply it to analyze a metagenomic dataset for species fingerprinting.
This suggests that evolutive pressure acts on a low-dimensional manifold despite the high-dimensionality of sequences' space.
arXiv Detail & Related papers (2022-07-20T06:38:36Z) - Do Not Escape From the Manifold: Discovering the Local Coordinates on
the Latent Space of GANs [7.443321740418409]
We propose a method to find local-geometry-aware traversal directions on the intermediate latent space of Generative Adversarial Networks (GANs)
Motivated by the intrinsic sparsity of the latent space, the basis is discovered by solving the low-rank approximation problem of the differential of the partial network.
arXiv Detail & Related papers (2021-06-13T10:29:42Z) - Low-Rank Subspaces in GANs [101.48350547067628]
This work introduces low-rank subspaces that enable more precise control of GAN generation.
LowRankGAN is able to find the low-dimensional representation of attribute manifold.
Experiments on state-of-the-art GAN models (including StyleGAN2 and BigGAN) trained on various datasets demonstrate the effectiveness of our LowRankGAN.
arXiv Detail & Related papers (2021-06-08T16:16:32Z) - EigenGAN: Layer-Wise Eigen-Learning for GANs [84.33920839885619]
EigenGAN is able to unsupervisedly mine interpretable and controllable dimensions from different generator layers.
By traversing the coefficient of a specific eigen-dimension, the generator can produce samples with continuous changes corresponding to a specific semantic attribute.
arXiv Detail & Related papers (2021-04-26T11:14:37Z) - The Geometry of Deep Generative Image Models and its Applications [0.0]
Generative adversarial networks (GANs) have emerged as a powerful unsupervised method to model the statistical patterns of real-world data sets.
These networks are trained to map random inputs in their latent space to new samples representative of the learned data.
The structure of the latent space is hard to intuit due to its high dimensionality and the non-linearity of the generator.
arXiv Detail & Related papers (2021-01-15T07:57:33Z) - Joint and Progressive Subspace Analysis (JPSA) with Spatial-Spectral
Manifold Alignment for Semi-Supervised Hyperspectral Dimensionality Reduction [48.73525876467408]
We propose a novel technique for hyperspectral subspace analysis.
The technique is called joint and progressive subspace analysis (JPSA)
Experiments are conducted to demonstrate the superiority and effectiveness of the proposed JPSA on two widely-used hyperspectral datasets.
arXiv Detail & Related papers (2020-09-21T16:29:59Z) - Closed-Form Factorization of Latent Semantics in GANs [65.42778970898534]
A rich set of interpretable dimensions has been shown to emerge in the latent space of the Generative Adversarial Networks (GANs) trained for synthesizing images.
In this work, we examine the internal representation learned by GANs to reveal the underlying variation factors in an unsupervised manner.
We propose a closed-form factorization algorithm for latent semantic discovery by directly decomposing the pre-trained weights.
arXiv Detail & Related papers (2020-07-13T18:05:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.