GMapLatent: Geometric Mapping in Latent Space
- URL: http://arxiv.org/abs/2503.23407v1
- Date: Sun, 30 Mar 2025 12:02:36 GMT
- Title: GMapLatent: Geometric Mapping in Latent Space
- Authors: Wei Zeng, Xuebin Chang, Jianghao Su, Xiang Gu, Jian Sun, Zongben Xu,
- Abstract summary: Cross-domain generative models based on encoder-decoder AI architectures have attracted much attention in generating realistic images.<n>We introduce a canonical latent space representation based on geometric mapping to align the cross-domain latent spaces in a rigorous and precise manner.<n>Experiments on gray-scale and color images validate the efficiency, efficacy and applicability of GMapLatent.
- Score: 51.317738404571514
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cross-domain generative models based on encoder-decoder AI architectures have attracted much attention in generating realistic images, where domain alignment is crucial for generation accuracy. Domain alignment methods usually deal directly with the initial distribution; however, mismatched or mixed clusters can lead to mode collapse and mixture problems in the decoder, compromising model generalization capabilities. In this work, we innovate a cross-domain alignment and generation model that introduces a canonical latent space representation based on geometric mapping to align the cross-domain latent spaces in a rigorous and precise manner, thus avoiding mode collapse and mixture in the encoder-decoder generation architectures. We name this model GMapLatent. The core of the method is to seamlessly align latent spaces with strict cluster correspondence constraints using the canonical parameterizations of cluster-decorated latent spaces. We first (1) transform the latent space to a canonical parameter domain by composing barycenter translation, optimal transport merging and constrained harmonic mapping, and then (2) compute geometric registration with cluster constraints over the canonical parameter domains. This process realizes a bijective (one-to-one and onto) mapping between newly transformed latent spaces and generates a precise alignment of cluster pairs. Cross-domain generation is then achieved through the aligned latent spaces embedded in the encoder-decoder pipeline. Experiments on gray-scale and color images validate the efficiency, efficacy and applicability of GMapLatent, and demonstrate that the proposed model has superior performance over existing models.
Related papers
- Boundless Across Domains: A New Paradigm of Adaptive Feature and Cross-Attention for Domain Generalization in Medical Image Segmentation [1.93061220186624]
Domain-invariant representation learning is a powerful method for domain generalization.
Previous approaches face challenges such as high computational demands, training instability, and limited effectiveness with high-dimensional data.
We propose an Adaptive Feature Blending (AFB) method that generates out-of-distribution samples while exploring the in-distribution space.
arXiv Detail & Related papers (2024-11-22T12:06:24Z) - From Semantics to Hierarchy: A Hybrid Euclidean-Tangent-Hyperbolic Space Model for Temporal Knowledge Graph Reasoning [1.1372536310854844]
Temporal knowledge graph (TKG) reasoning predicts future events based on historical data.
Existing Euclidean models excel at capturing semantics but struggle with hierarchy.
We propose a novel hybrid geometric space approach that leverages the strengths of both Euclidean and hyperbolic models.
arXiv Detail & Related papers (2024-08-30T10:33:08Z) - Thinner Latent Spaces: Detecting dimension and imposing invariance through autoencoder gradient constraints [9.380902608139902]
We show that orthogonality relations within the latent layer of the network can be leveraged to infer the intrinsic dimensionality of nonlinear manifold data sets.
We outline the relevant theory relying on differential geometry, and describe the corresponding gradient-descent optimization algorithm.
arXiv Detail & Related papers (2024-08-28T20:56:35Z) - Dynamic Kernel-Based Adaptive Spatial Aggregation for Learned Image
Compression [63.56922682378755]
We focus on extending spatial aggregation capability and propose a dynamic kernel-based transform coding.
The proposed adaptive aggregation generates kernel offsets to capture valid information in the content-conditioned range to help transform.
Experimental results demonstrate that our method achieves superior rate-distortion performance on three benchmarks compared to the state-of-the-art learning-based methods.
arXiv Detail & Related papers (2023-08-17T01:34:51Z) - Unsupervised Contrastive Domain Adaptation for Semantic Segmentation [75.37470873764855]
We introduce contrastive learning for feature alignment in cross-domain adaptation.
The proposed approach consistently outperforms state-of-the-art methods for domain adaptation.
It achieves 60.2% mIoU on the Cityscapes dataset.
arXiv Detail & Related papers (2022-04-18T16:50:46Z) - Few Shot Generative Model Adaption via Relaxed Spatial Structural
Alignment [130.84010267004803]
Training a generative adversarial network (GAN) with limited data has been a challenging task.
A feasible solution is to start with a GAN well-trained on a large scale source domain and adapt it to the target domain with a few samples, termed as few shot generative model adaption.
We propose a relaxed spatial structural alignment method to calibrate the target generative models during the adaption.
arXiv Detail & Related papers (2022-03-06T14:26:25Z) - Simultaneous Semantic Alignment Network for Heterogeneous Domain
Adaptation [67.37606333193357]
We propose aSimultaneous Semantic Alignment Network (SSAN) to simultaneously exploit correlations among categories and align the centroids for each category across domains.
By leveraging target pseudo-labels, a robust triplet-centroid alignment mechanism is explicitly applied to align feature representations for each category.
Experiments on various HDA tasks across text-to-image, image-to-image and text-to-text successfully validate the superiority of our SSAN against state-of-the-art HDA methods.
arXiv Detail & Related papers (2020-08-04T16:20:37Z) - Bi-Directional Generation for Unsupervised Domain Adaptation [61.73001005378002]
Unsupervised domain adaptation facilitates the unlabeled target domain relying on well-established source domain information.
Conventional methods forcefully reducing the domain discrepancy in the latent space will result in the destruction of intrinsic data structure.
We propose a Bi-Directional Generation domain adaptation model with consistent classifiers interpolating two intermediate domains to bridge source and target domains.
arXiv Detail & Related papers (2020-02-12T09:45:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.