Privacy-Preserving Wavelet Wavelet Neural Network with Fully Homomorphic
Encryption
- URL: http://arxiv.org/abs/2205.13265v1
- Date: Thu, 26 May 2022 10:40:31 GMT
- Title: Privacy-Preserving Wavelet Wavelet Neural Network with Fully Homomorphic
Encryption
- Authors: Syed Imtiaz Ahamed and Vadlamani Ravi
- Abstract summary: Privacy-Preserving Machine Learning (PPML) aims to protect the privacy and provide security to the data used in building Machine Learning models.
We propose a fully homomorphic encrypted wavelet neural network to protect privacy and at the same time not compromise on the efficiency of the model.
- Score: 5.010425616264462
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The main aim of Privacy-Preserving Machine Learning (PPML) is to protect the
privacy and provide security to the data used in building Machine Learning
models. There are various techniques in PPML such as Secure Multi-Party
Computation, Differential Privacy, and Homomorphic Encryption (HE). The
techniques are combined with various Machine Learning models and even Deep
Learning Networks to protect the data privacy as well as the identity of the
user. In this paper, we propose a fully homomorphic encrypted wavelet neural
network to protect privacy and at the same time not compromise on the
efficiency of the model. We tested the effectiveness of the proposed method on
seven datasets taken from the finance and healthcare domains. The results show
that our proposed model performs similarly to the unencrypted model.
Related papers
- Masked Differential Privacy [64.32494202656801]
We propose an effective approach called masked differential privacy (DP), which allows for controlling sensitive regions where differential privacy is applied.
Our method operates selectively on data and allows for defining non-sensitive-temporal regions without DP application or combining differential privacy with other privacy techniques within data samples.
arXiv Detail & Related papers (2024-10-22T15:22:53Z) - Enhancing User-Centric Privacy Protection: An Interactive Framework through Diffusion Models and Machine Unlearning [54.30994558765057]
The study pioneers a comprehensive privacy protection framework that safeguards image data privacy concurrently during data sharing and model publication.
We propose an interactive image privacy protection framework that utilizes generative machine learning models to modify image information at the attribute level.
Within this framework, we instantiate two modules: a differential privacy diffusion model for protecting attribute information in images and a feature unlearning algorithm for efficient updates of the trained model on the revised image dataset.
arXiv Detail & Related papers (2024-09-05T07:55:55Z) - PrivacyMind: Large Language Models Can Be Contextual Privacy Protection Learners [81.571305826793]
We introduce Contextual Privacy Protection Language Models (PrivacyMind)
Our work offers a theoretical analysis for model design and benchmarks various techniques.
In particular, instruction tuning with both positive and negative examples stands out as a promising method.
arXiv Detail & Related papers (2023-10-03T22:37:01Z) - Robust Representation Learning for Privacy-Preserving Machine Learning:
A Multi-Objective Autoencoder Approach [0.9831489366502302]
We propose a robust representation learning framework for privacy-preserving machine learning (ppML)
Our method centers on training autoencoders in a multi-objective manner and then concatenating the latent and learned features from the encoding part as the encoded form of our data.
With our proposed framework, we can share our data and use third party tools without being under the threat of revealing its original form.
arXiv Detail & Related papers (2023-09-08T16:41:25Z) - A Survey on Differential Privacy with Machine Learning and Future
Outlook [0.0]
differential privacy is used to protect machine learning models from any attacks and vulnerabilities.
This survey paper presents different differentially private machine learning algorithms categorized into two main categories.
arXiv Detail & Related papers (2022-11-19T14:20:53Z) - Privacy-Preserved Neural Graph Similarity Learning [99.78599103903777]
We propose a novel Privacy-Preserving neural Graph Matching network model, named PPGM, for graph similarity learning.
To prevent reconstruction attacks, the proposed model does not communicate node-level representations between devices.
To alleviate the attacks to graph properties, the obfuscated features that contain information from both vectors are communicated.
arXiv Detail & Related papers (2022-10-21T04:38:25Z) - Privacy-Preserving Chaotic Extreme Learning Machine with Fully
Homomorphic Encryption [5.010425616264462]
We propose a Chaotic Extreme Learning Machine and its encrypted form using Fully Homomorphic Encryption.
Our proposed method has performed either better or similar to the Traditional Extreme Learning Machine on most of the datasets.
arXiv Detail & Related papers (2022-08-04T11:29:52Z) - Protecting Data from all Parties: Combining FHE and DP in Federated
Learning [0.09176056742068812]
We propose a secure framework addressing an extended threat model with respect to privacy of the training data.
The proposed framework protects the privacy of the training data from all participants, namely the training data owners and an aggregating server.
By means of a novel quantization operator, we prove differential privacy guarantees in a context where the noise is quantified and bounded due to the use of homomorphic encryption.
arXiv Detail & Related papers (2022-05-09T14:33:44Z) - Homomorphic Encryption and Federated Learning based Privacy-Preserving
CNN Training: COVID-19 Detection Use-Case [0.41998444721319217]
This paper proposes a privacy-preserving federated learning algorithm for medical data using homomorphic encryption.
The proposed algorithm uses a secure multi-party computation protocol to protect the deep learning model from the adversaries.
arXiv Detail & Related papers (2022-04-16T08:38:35Z) - Just Fine-tune Twice: Selective Differential Privacy for Large Language
Models [69.66654761324702]
We propose a simple yet effective just-fine-tune-twice privacy mechanism to achieve SDP for large Transformer-based language models.
Experiments show that our models achieve strong performance while staying robust to the canary insertion attack.
arXiv Detail & Related papers (2022-04-15T22:36:55Z) - Robustness Threats of Differential Privacy [70.818129585404]
We experimentally demonstrate that networks, trained with differential privacy, in some settings might be even more vulnerable in comparison to non-private versions.
We study how the main ingredients of differentially private neural networks training, such as gradient clipping and noise addition, affect the robustness of the model.
arXiv Detail & Related papers (2020-12-14T18:59:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.