Robust Representation Learning for Privacy-Preserving Machine Learning:
A Multi-Objective Autoencoder Approach
- URL: http://arxiv.org/abs/2309.04427v1
- Date: Fri, 8 Sep 2023 16:41:25 GMT
- Title: Robust Representation Learning for Privacy-Preserving Machine Learning:
A Multi-Objective Autoencoder Approach
- Authors: Sofiane Ouaari, Ali Burak \"Unal, Mete Akg\"un, Nico Pfeifer
- Abstract summary: We propose a robust representation learning framework for privacy-preserving machine learning (ppML)
Our method centers on training autoencoders in a multi-objective manner and then concatenating the latent and learned features from the encoding part as the encoded form of our data.
With our proposed framework, we can share our data and use third party tools without being under the threat of revealing its original form.
- Score: 0.9831489366502302
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Several domains increasingly rely on machine learning in their applications.
The resulting heavy dependence on data has led to the emergence of various laws
and regulations around data ethics and privacy and growing awareness of the
need for privacy-preserving machine learning (ppML). Current ppML techniques
utilize methods that are either purely based on cryptography, such as
homomorphic encryption, or that introduce noise into the input, such as
differential privacy. The main criticism given to those techniques is the fact
that they either are too slow or they trade off a model s performance for
improved confidentiality. To address this performance reduction, we aim to
leverage robust representation learning as a way of encoding our data while
optimizing the privacy-utility trade-off. Our method centers on training
autoencoders in a multi-objective manner and then concatenating the latent and
learned features from the encoding part as the encoded form of our data. Such a
deep learning-powered encoding can then safely be sent to a third party for
intensive training and hyperparameter tuning. With our proposed framework, we
can share our data and use third party tools without being under the threat of
revealing its original form. We empirically validate our results on unimodal
and multimodal settings, the latter following a vertical splitting system and
show improved performance over state-of-the-art.
Related papers
- FLUE: Federated Learning with Un-Encrypted model weights [0.0]
Federated learning enables devices to collaboratively train a shared model while keeping training data locally stored.
Recent research emphasizes using encrypted model parameters during training.
This paper introduces a novel federated learning algorithm, leveraging coded local gradients without encryption.
arXiv Detail & Related papers (2024-07-26T14:04:57Z) - FewFedPIT: Towards Privacy-preserving and Few-shot Federated Instruction Tuning [54.26614091429253]
Federated instruction tuning (FedIT) is a promising solution, by consolidating collaborative training across multiple data owners.
FedIT encounters limitations such as scarcity of instructional data and risk of exposure to training data extraction attacks.
We propose FewFedPIT, designed to simultaneously enhance privacy protection and model performance of federated few-shot learning.
arXiv Detail & Related papers (2024-03-10T08:41:22Z) - PrivacyMind: Large Language Models Can Be Contextual Privacy Protection Learners [81.571305826793]
We introduce Contextual Privacy Protection Language Models (PrivacyMind)
Our work offers a theoretical analysis for model design and benchmarks various techniques.
In particular, instruction tuning with both positive and negative examples stands out as a promising method.
arXiv Detail & Related papers (2023-10-03T22:37:01Z) - Learning in the Dark: Privacy-Preserving Machine Learning using Function Approximation [1.8907108368038215]
Learning in the Dark is a privacy-preserving machine learning model that can classify encrypted images with high accuracy.
It is capable of performing high accuracy predictions by performing computations directly on encrypted data.
arXiv Detail & Related papers (2023-09-15T06:45:58Z) - PEOPL: Characterizing Privately Encoded Open Datasets with Public Labels [59.66777287810985]
We introduce information-theoretic scores for privacy and utility, which quantify the average performance of an unfaithful user.
We then theoretically characterize primitives in building families of encoding schemes that motivate the use of random deep neural networks.
arXiv Detail & Related papers (2023-03-31T18:03:53Z) - Enhancing Multiple Reliability Measures via Nuisance-extended
Information Bottleneck [77.37409441129995]
In practical scenarios where training data is limited, many predictive signals in the data can be rather from some biases in data acquisition.
We consider an adversarial threat model under a mutual information constraint to cover a wider class of perturbations in training.
We propose an autoencoder-based training to implement the objective, as well as practical encoder designs to facilitate the proposed hybrid discriminative-generative training.
arXiv Detail & Related papers (2023-03-24T16:03:21Z) - Privacy-Preserving Chaotic Extreme Learning Machine with Fully
Homomorphic Encryption [5.010425616264462]
We propose a Chaotic Extreme Learning Machine and its encrypted form using Fully Homomorphic Encryption.
Our proposed method has performed either better or similar to the Traditional Extreme Learning Machine on most of the datasets.
arXiv Detail & Related papers (2022-08-04T11:29:52Z) - Multimodal Masked Autoencoders Learn Transferable Representations [127.35955819874063]
We propose a simple and scalable network architecture, the Multimodal Masked Autoencoder (M3AE)
M3AE learns a unified encoder for both vision and language data via masked token prediction.
We provide an empirical study of M3AE trained on a large-scale image-text dataset, and find that M3AE is able to learn generalizable representations that transfer well to downstream tasks.
arXiv Detail & Related papers (2022-05-27T19:09:42Z) - Privacy-Preserving Wavelet Wavelet Neural Network with Fully Homomorphic
Encryption [5.010425616264462]
Privacy-Preserving Machine Learning (PPML) aims to protect the privacy and provide security to the data used in building Machine Learning models.
We propose a fully homomorphic encrypted wavelet neural network to protect privacy and at the same time not compromise on the efficiency of the model.
arXiv Detail & Related papers (2022-05-26T10:40:31Z) - Homomorphic Encryption and Federated Learning based Privacy-Preserving
CNN Training: COVID-19 Detection Use-Case [0.41998444721319217]
This paper proposes a privacy-preserving federated learning algorithm for medical data using homomorphic encryption.
The proposed algorithm uses a secure multi-party computation protocol to protect the deep learning model from the adversaries.
arXiv Detail & Related papers (2022-04-16T08:38:35Z) - User-Level Privacy-Preserving Federated Learning: Analysis and
Performance Optimization [77.43075255745389]
Federated learning (FL) is capable of preserving private data from mobile terminals (MTs) while training the data into useful models.
From a viewpoint of information theory, it is still possible for a curious server to infer private information from the shared models uploaded by MTs.
We propose a user-level differential privacy (UDP) algorithm by adding artificial noise to the shared models before uploading them to servers.
arXiv Detail & Related papers (2020-02-29T10:13:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.