論文の概要: The Effect of Task Ordering in Continual Learning
- arxiv url: http://arxiv.org/abs/2205.13323v1
- Date: Thu, 26 May 2022 12:56:15 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-27 14:22:45.462789
- Title: The Effect of Task Ordering in Continual Learning
- Title(参考訳): 連続学習におけるタスク順序付けの効果
- Authors: Samuel J. Bell and Neil D. Lawrence
- Abstract要約: 再注文タスクが破滅的忘れの量に大きく影響していることが示される。
本研究では,タスクオーダリングの効果を利用して連続的な学習性能を変化させることを示す。
- 参考スコア(独自算出の注目度): 12.571389210876315
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We investigate the effect of task ordering on continual learning performance.
We conduct an extensive series of empirical experiments on synthetic and
naturalistic datasets and show that reordering tasks significantly affects the
amount of catastrophic forgetting. Connecting to the field of curriculum
learning, we show that the effect of task ordering can be exploited to modify
continual learning performance, and present a simple approach for doing so. Our
method computes the distance between all pairs of tasks, where distance is
defined as the source task curvature of a gradient step toward the target task.
Using statistically rigorous methods and sound experimental design, we show
that task ordering is an important aspect of continual learning that can be
modified for improved performance.
- Abstract(参考訳): タスクオーダリングが連続学習性能に及ぼす影響について検討する。
我々は、合成および自然主義的なデータセットに関する広範な実験を行い、リオーダータスクが破滅的な忘れの量に大きな影響を及ぼすことを示す。
カリキュラム学習の分野と結びつくことで,タスクオーダリングの効果を利用して連続的な学習性能を改善できることを示し,これを実現するための簡単なアプローチを提案する。
対象タスクに対する勾配ステップのソースタスク曲率として距離を定義することにより,すべてのタスク間の距離を計算する。
統計的に厳密な手法と音響実験設計を用いることで、タスク順序付けが継続的な学習の重要な側面であり、性能改善のために修正可能であることを示す。
関連論文リスト
- Does the Order of Fine-tuning Matter and Why? [11.975836356680855]
本研究では,複数の中間タスクの微調整とその順序がタスク性能に及ぼす影響について検討する。
実験の結果,タスクオーダリングが目標タスクのパフォーマンスに与える影響は,パフォーマンスの最大6%,パフォーマンスの最大4%であることがわかった。
論文 参考訳(メタデータ) (2024-10-03T19:07:14Z) - Task Weighting through Gradient Projection for Multitask Learning [5.5967570276373655]
マルチタスク学習では、タスク勾配間の衝突は、モデルのトレーニングパフォーマンスを劣化させる頻繁な問題である。
本研究では,タスク優先順位付けを同時に行うために,グラディエント・プロジェクション・アルゴリズムであるPCGradを適用する手法を提案する。
従来のタスクの重み付けとは違い、重み付け方式は、タスクが矛盾している場合にのみ適用されるが、トレーニングを妨げない場合にのみ適用される。
論文 参考訳(メタデータ) (2024-09-03T11:17:44Z) - Instruction Matters: A Simple yet Effective Task Selection for Optimized Instruction Tuning of Specific Tasks [51.15473776489712]
本稿では,命令情報のみを利用してタスクを識別する,シンプルで効果的なタスク選択手法を提案する。
提案手法は,タスク間のペア転送可能性の複雑な測定や,対象タスクのためのデータサンプルの作成を必要とする従来の手法に比べて,はるかに効率的である。
実験の結果、命令のみに選択されたタスクセットのトレーニングにより、P3、Big-Bench、NIV2、Big-Bench Hardといったベンチマークのパフォーマンスが大幅に改善された。
論文 参考訳(メタデータ) (2024-04-25T08:49:47Z) - Data-CUBE: Data Curriculum for Instruction-based Sentence Representation
Learning [85.66907881270785]
本稿では,学習用マルチタスクデータの順序を列挙するデータカリキュラム,すなわちData-CUBEを提案する。
タスクレベルでは、タスク間の干渉リスクを最小化するために最適なタスクオーダーを見つけることを目的としている。
インスタンスレベルでは、タスク毎のすべてのインスタンスの難易度を測定し、トレーニングのためにそれらを簡単に微分できるミニバッチに分割します。
論文 参考訳(メタデータ) (2024-01-07T18:12:20Z) - An Exploration of Data Efficiency in Intra-Dataset Task Transfer for
Dialog Understanding [65.75873687351553]
本研究は,対話領域における逐次移動学習における目標タスク訓練データ量の影響について検討する。
非意図的に、我々のデータでは、タスクトレーニングデータのサイズを目標とする場合、シーケンシャルトランスファーラーニングがトランスファーラーニングなしで同じモデルと比較した場合、最小限の効果が示される。
論文 参考訳(メタデータ) (2022-10-21T04:36:46Z) - Task Formulation Matters When Learning Continually: A Case Study in
Visual Question Answering [58.82325933356066]
継続的な学習は、以前の知識を忘れずに、一連のタスクでモデルを漸進的にトレーニングすることを目的としている。
本稿では,視覚的質問応答において,異なる設定がパフォーマンスに与える影響について詳細に検討する。
論文 参考訳(メタデータ) (2022-09-30T19:12:58Z) - Leveraging convergence behavior to balance conflicting tasks in
multi-task learning [3.6212652499950138]
マルチタスク学習は、パフォーマンスの一般化を改善するために相関タスクを使用する。
タスクは互いに衝突することが多いため、複数のタスクの勾配をどのように組み合わせるべきかを定義するのは難しい。
バックプロパゲーション中の各タスクの重要度を調整する動的バイアスを生成するために,勾配の時間的挙動を考慮した手法を提案する。
論文 参考訳(メタデータ) (2022-04-14T01:52:34Z) - Variational Multi-Task Learning with Gumbel-Softmax Priors [105.22406384964144]
マルチタスク学習は、タスク関連性を探究し、個々のタスクを改善することを目的としている。
本稿では,複数のタスクを学習するための一般的な確率的推論フレームワークである変分マルチタスク学習(VMTL)を提案する。
論文 参考訳(メタデータ) (2021-11-09T18:49:45Z) - Efficiently Identifying Task Groupings for Multi-Task Learning [55.80489920205404]
マルチタスク学習は、あるタスクによって学習された情報を活用して、他のタスクのトレーニングに役立てることができる。
マルチタスク学習モデルにおいて、どのタスクを一緒にトレーニングすべきかを選択するアプローチを提案する。
本手法は,全タスクを協調学習し,タスクの勾配が他のタスクの損失に影響を及ぼす影響を定量化する。
論文 参考訳(メタデータ) (2021-09-10T02:01:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。