Learning black- and gray-box chemotactic PDEs/closures from agent based
Monte Carlo simulation data
- URL: http://arxiv.org/abs/2205.13545v1
- Date: Thu, 26 May 2022 03:02:49 GMT
- Title: Learning black- and gray-box chemotactic PDEs/closures from agent based
Monte Carlo simulation data
- Authors: Seungjoon Lee, Yorgos M. Psarellis, Constantinos I. Siettos, Ioannis
G. Kevrekidis
- Abstract summary: We propose a machine learning framework for the data-driven discovery of macroscopic chemotactic Partial Differential Equations (PDEs)
The fine scale, detailed, hybrid (continuum - Monte Carlo) simulation model embodies the underlying biophysics.
We learn effective, coarse-grained "Keller-Segel class" chemotactic PDEs using machine learning regressors.
- Score: 0.6882042556551611
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a machine learning framework for the data-driven discovery of
macroscopic chemotactic Partial Differential Equations (PDEs) -- and the
closures that lead to them -- from high-fidelity, individual-based stochastic
simulations of E.coli bacterial motility. The fine scale, detailed, hybrid
(continuum - Monte Carlo) simulation model embodies the underlying biophysics,
and its parameters are informed from experimental observations of individual
cells. We exploit Automatic Relevance Determination (ARD) within a Gaussian
Process framework for the identification of a parsimonious set of collective
observables that parametrize the law of the effective PDEs. Using these
observables, in a second step we learn effective, coarse-grained "Keller-Segel
class" chemotactic PDEs using machine learning regressors: (a) (shallow)
feedforward neural networks and (b) Gaussian Processes. The learned laws can be
black-box (when no prior knowledge about the PDE law structure is assumed) or
gray-box when parts of the equation (e.g. the pure diffusion part) is known and
"hardwired" in the regression process. We also discuss data-driven corrections
(both additive and functional) of analytically known, approximate closures.
Related papers
- Conditionally-Conjugate Gaussian Process Factor Analysis for Spike Count Data via Data Augmentation [8.114880112033644]
Recently, GPFA has been extended to model spike count data.
We propose a conditionally-conjugate Gaussian process factor analysis (ccGPFA) resulting in both analytically and computationally tractable inference.
arXiv Detail & Related papers (2024-05-19T21:53:36Z) - A Multi-Grained Symmetric Differential Equation Model for Learning
Protein-Ligand Binding Dynamics [74.93549765488103]
In drug discovery, molecular dynamics simulation provides a powerful tool for predicting binding affinities, estimating transport properties, and exploring pocket sites.
We propose NeuralMD, the first machine learning surrogate that can facilitate numerical MD and provide accurate simulations in protein-ligand binding.
We show the efficiency and effectiveness of NeuralMD, with a 2000$times$ speedup over standard numerical MD simulation and outperforming all other ML approaches by up to 80% under the stability metric.
arXiv Detail & Related papers (2024-01-26T09:35:17Z) - Online Variational Sequential Monte Carlo [49.97673761305336]
We build upon the variational sequential Monte Carlo (VSMC) method, which provides computationally efficient and accurate model parameter estimation and Bayesian latent-state inference.
Online VSMC is capable of performing efficiently, entirely on-the-fly, both parameter estimation and particle proposal adaptation.
arXiv Detail & Related papers (2023-12-19T21:45:38Z) - Stochastic Schr\"odinger equation approach to real-time dynamics of
Anderson-Holstein impurities: an open quantum system perspective [3.105656247358225]
We develop a framework to simulate dynamics of Anderson-Holstein impurities coupled to a continuous fermionic bath.
We show that such an SSE treatment provides a middle ground between numerically expansive microscopic simulations and master equations.
arXiv Detail & Related papers (2023-09-16T06:03:54Z) - Monte Carlo Neural PDE Solver for Learning PDEs via Probabilistic Representation [59.45669299295436]
We propose a Monte Carlo PDE solver for training unsupervised neural solvers.
We use the PDEs' probabilistic representation, which regards macroscopic phenomena as ensembles of random particles.
Our experiments on convection-diffusion, Allen-Cahn, and Navier-Stokes equations demonstrate significant improvements in accuracy and efficiency.
arXiv Detail & Related papers (2023-02-10T08:05:19Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
We propose a probabilistic model called ME-NODE to incorporate (fixed + random) mixed effects for analyzing panel data.
We show that our model can be derived using smooth approximations of SDEs provided by the Wong-Zakai theorem.
We then derive Evidence Based Lower Bounds for ME-NODE, and develop (efficient) training algorithms.
arXiv Detail & Related papers (2022-02-18T22:41:51Z) - Inverting brain grey matter models with likelihood-free inference: a
tool for trustable cytoarchitecture measurements [62.997667081978825]
characterisation of the brain grey matter cytoarchitecture with quantitative sensitivity to soma density and volume remains an unsolved challenge in dMRI.
We propose a new forward model, specifically a new system of equations, requiring a few relatively sparse b-shells.
We then apply modern tools from Bayesian analysis known as likelihood-free inference (LFI) to invert our proposed model.
arXiv Detail & Related papers (2021-11-15T09:08:27Z) - Prediction of liquid fuel properties using machine learning models with
Gaussian processes and probabilistic conditional generative learning [56.67751936864119]
The present work aims to construct cheap-to-compute machine learning (ML) models to act as closure equations for predicting the physical properties of alternative fuels.
Those models can be trained using the database from MD simulations and/or experimental measurements in a data-fusion-fidelity approach.
The results show that ML models can predict accurately the fuel properties of a wide range of pressure and temperature conditions.
arXiv Detail & Related papers (2021-10-18T14:43:50Z) - Learning to discover: expressive Gaussian mixture models for
multi-dimensional simulation and parameter inference in the physical sciences [0.0]
We show that density models describing multiple observables may be created using an auto-regressive Gaussian mixture model.
The model is designed to capture how observable spectra are deformed by hypothesis variations.
It may be used as a statistical model for scientific discovery in interpreting experimental observations.
arXiv Detail & Related papers (2021-08-25T21:27:29Z) - Using Restricted Boltzmann Machines to Model Molecular Geometries [0.0]
This paper proposes a new methodology for modeling a set of physical parameters by taking advantage of the Boltzmann machine's fast learning capacity and representational power.
In this paper we introduce a new RBM based on the Tanh activation function, and conduct a comparison of RBMs with different activation functions.
We demonstrate the ability of Gaussian RBMs to model small molecules such as water and ethane.
arXiv Detail & Related papers (2020-12-13T07:02:32Z) - Particles to Partial Differential Equations Parsimoniously [0.0]
coarse-grained effective Partial Differential Equations can lead to considerable savings in computation-intensive tasks like prediction or control.
We propose a framework combining artificial neural networks with multiscale computation, in the form of equation-free numerics.
We illustrate our approach by extracting coarse-grained evolution equations from particle-based simulations with a priori unknown macro-scale variable.
arXiv Detail & Related papers (2020-11-09T15:51:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.