Prediction of liquid fuel properties using machine learning models with
Gaussian processes and probabilistic conditional generative learning
- URL: http://arxiv.org/abs/2110.09360v1
- Date: Mon, 18 Oct 2021 14:43:50 GMT
- Title: Prediction of liquid fuel properties using machine learning models with
Gaussian processes and probabilistic conditional generative learning
- Authors: Rodolfo S. M. Freitas, \'Agatha P. F. Lima, Cheng Chen, Fernando A.
Rochinha, Daniel Mira, Xi Jiang
- Abstract summary: The present work aims to construct cheap-to-compute machine learning (ML) models to act as closure equations for predicting the physical properties of alternative fuels.
Those models can be trained using the database from MD simulations and/or experimental measurements in a data-fusion-fidelity approach.
The results show that ML models can predict accurately the fuel properties of a wide range of pressure and temperature conditions.
- Score: 56.67751936864119
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate determination of fuel properties of complex mixtures over a wide
range of pressure and temperature conditions is essential to utilizing
alternative fuels. The present work aims to construct cheap-to-compute machine
learning (ML) models to act as closure equations for predicting the physical
properties of alternative fuels. Those models can be trained using the database
from MD simulations and/or experimental measurements in a data-fusion-fidelity
approach. Here, Gaussian Process (GP) and probabilistic generative models are
adopted. GP is a popular non-parametric Bayesian approach to build surrogate
models mainly due to its capacity to handle the aleatory and epistemic
uncertainties. Generative models have shown the ability of deep neural networks
employed with the same intent. In this work, ML analysis is focused on a
particular property, the fuel density, but it can also be extended to other
physicochemical properties. This study explores the versatility of the ML
models to handle multi-fidelity data. The results show that ML models can
predict accurately the fuel properties of a wide range of pressure and
temperature conditions.
Related papers
- Physics-Informed Machine Learning for Grade Prediction in Froth Flotation [8.271361104403802]
This paper develops a physics-informed neural network model to predict the concentrate gold grade in froth flotation cells.
The complexity of models based on first-principles restricts their direct use, while purely data-driven models often fail in dynamic industrial environments.
arXiv Detail & Related papers (2024-08-12T12:10:36Z) - Fusion of Gaussian Processes Predictions with Monte Carlo Sampling [61.31380086717422]
In science and engineering, we often work with models designed for accurate prediction of variables of interest.
Recognizing that these models are approximations of reality, it becomes desirable to apply multiple models to the same data and integrate their outcomes.
arXiv Detail & Related papers (2024-03-03T04:21:21Z) - A Priori Uncertainty Quantification of Reacting Turbulence Closure Models using Bayesian Neural Networks [0.0]
We employ Bayesian neural networks to capture uncertainties in a reacting flow model.
We demonstrate that BNN models can provide unique insights about the structure of uncertainty of the data-driven closure models.
The efficacy of the model is demonstrated by a priori evaluation on a dataset consisting of a variety of flame conditions and fuels.
arXiv Detail & Related papers (2024-02-28T22:19:55Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
We propose a framework that combines Symbolic Regression (SR) and Discrete Exterior Calculus (DEC) for the automated discovery of physical models.
DEC provides building blocks for the discrete analogue of field theories, which are beyond the state-of-the-art applications of SR to physical problems.
We prove the effectiveness of our methodology by re-discovering three models of Continuum Physics from synthetic experimental data.
arXiv Detail & Related papers (2023-10-10T13:23:05Z) - Accurate machine learning force fields via experimental and simulation
data fusion [0.0]
Machine Learning (ML)-based force fields are attracting ever-increasing interest due to their capacity to span scales of classical interatomic potentials at quantum-level accuracy.
Here we leverage both Density Functional Theory (DFT) calculations and experimentally measured mechanical properties and lattice parameters to train an ML potential of titanium.
We demonstrate that the fused data learning strategy can concurrently satisfy all target objectives, thus resulting in a molecular model of higher accuracy compared to the models trained with a single source data.
arXiv Detail & Related papers (2023-08-17T18:22:19Z) - Balanced Training of Energy-Based Models with Adaptive Flow Sampling [13.951904929884618]
Energy-based models (EBMs) are versatile density estimation models that directly parameterize an unnormalized log density.
We propose a new maximum likelihood training algorithm for EBMs that uses a different type of generative model, normalizing flows (NF)
Our method fits an NF to an EBM during training so that an NF-assisted sampling scheme provides an accurate gradient for the EBMs at all times.
arXiv Detail & Related papers (2023-06-01T13:58:06Z) - Physics-informed machine learning with differentiable programming for
heterogeneous underground reservoir pressure management [64.17887333976593]
Avoiding over-pressurization in subsurface reservoirs is critical for applications like CO2 sequestration and wastewater injection.
Managing the pressures by controlling injection/extraction are challenging because of complex heterogeneity in the subsurface.
We use differentiable programming with a full-physics model and machine learning to determine the fluid extraction rates that prevent over-pressurization.
arXiv Detail & Related papers (2022-06-21T20:38:13Z) - Learning Large-scale Subsurface Simulations with a Hybrid Graph Network
Simulator [57.57321628587564]
We introduce Hybrid Graph Network Simulator (HGNS) for learning reservoir simulations of 3D subsurface fluid flows.
HGNS consists of a subsurface graph neural network (SGNN) to model the evolution of fluid flows, and a 3D-U-Net to model the evolution of pressure.
Using an industry-standard subsurface flow dataset (SPE-10) with 1.1 million cells, we demonstrate that HGNS is able to reduce the inference time up to 18 times compared to standard subsurface simulators.
arXiv Detail & Related papers (2022-06-15T17:29:57Z) - Generative models and Bayesian inversion using Laplace approximation [0.3670422696827525]
Recently, inverse problems were solved using generative models as highly informative priors.
We show that derived Bayes estimates are consistent, in contrast to the approach employing the low-dimensional manifold of the generative model.
arXiv Detail & Related papers (2022-03-15T10:05:43Z) - Physics-informed CoKriging model of a redox flow battery [68.8204255655161]
Redox flow batteries (RFBs) offer the capability to store large amounts of energy cheaply and efficiently.
There is a need for fast and accurate models of the charge-discharge curve of a RFB to potentially improve the battery capacity and performance.
We develop a multifidelity model for predicting the charge-discharge curve of a RFB.
arXiv Detail & Related papers (2021-06-17T00:49:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.