TraClets: Harnessing the power of computer vision for trajectory
classification
- URL: http://arxiv.org/abs/2205.13880v2
- Date: Mon, 30 May 2022 11:38:29 GMT
- Title: TraClets: Harnessing the power of computer vision for trajectory
classification
- Authors: Ioannis Kontopoulos, Antonios Makris, Konstantinos Tserpes, Vania
Bogorny
- Abstract summary: This research is presented that exploits image representations of trajectories, called TraClets, in order to classify trajectories in an intuitive humans way.
Several real-world datasets are used to evaluate the proposed approach and compare its classification performance to other state-of-the-art trajectory classification algorithms.
- Score: 0.9405458160620532
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Due to the advent of new mobile devices and tracking sensors in recent years,
huge amounts of data are being produced every day. Therefore, novel
methodologies need to emerge that dive through this vast sea of information and
generate insights and meaningful information. To this end, researchers have
developed several trajectory classification algorithms over the years that are
able to annotate tracking data. Similarly, in this research, a novel
methodology is presented that exploits image representations of trajectories,
called TraClets, in order to classify trajectories in an intuitive humans way,
through computer vision techniques. Several real-world datasets are used to
evaluate the proposed approach and compare its classification performance to
other state-of-the-art trajectory classification algorithms. Experimental
results demonstrate that TraClets achieves a classification performance that is
comparable to, or in most cases, better than the state-of-the-art, acting as a
universal, high-accuracy approach for trajectory classification.
Related papers
- Contextuality Helps Representation Learning for Generalized Category Discovery [5.885208652383516]
This paper introduces a novel approach to Generalized Category Discovery (GCD) by leveraging the concept of contextuality.
Our model integrates two levels of contextuality: instance-level, where nearest-neighbor contexts are utilized for contrastive learning, and cluster-level, employing contrastive learning.
The integration of the contextual information effectively improves the feature learning and thereby the classification accuracy of all categories.
arXiv Detail & Related papers (2024-07-29T07:30:41Z) - A Survey of Distance-Based Vessel Trajectory Clustering: Data Pre-processing, Methodologies, Applications, and Experimental Evaluation [16.87659569476234]
Vessel trajectory clustering is a crucial component of the maritime intelligent transportation systems.
Vessel trajectory clustering provides valuable insights for applications such as anomaly detection and trajectory prediction.
This paper presents a comprehensive survey of the most prevalent distance-based vessel trajectory clustering methods.
arXiv Detail & Related papers (2024-07-13T17:02:44Z) - LatentForensics: Towards frugal deepfake detection in the StyleGAN latent space [2.629091178090276]
We propose a deepfake detection method that operates in the latent space of a state-of-the-art generative adversarial network (GAN) trained on high-quality face images.
Experimental results on standard datasets reveal that the proposed approach outperforms other state-of-the-art deepfake classification methods.
arXiv Detail & Related papers (2023-03-30T08:36:48Z) - A Semi-supervised Approach for Activity Recognition from Indoor
Trajectory Data [0.822021749810331]
We consider the task of classifying the activities of moving objects from their noisy indoor trajectory data in a collaborative manufacturing environment.
We present a semi-supervised machine learning approach that first applies an information theoretic criterion to partition a long trajectory into a set of segments.
The segments are then labelled automatically based on a constrained hierarchical clustering method.
arXiv Detail & Related papers (2023-01-09T01:20:50Z) - Classifying Spatial Trajectories [13.200502573462712]
First comprehensive study on how to classify trajectories using only their spatial representations.
New methods for how to vectorize trajectories via a data-driven method to select the associated landmarks prove among the most effective.
arXiv Detail & Related papers (2022-09-03T04:17:39Z) - Learning from Temporal Spatial Cubism for Cross-Dataset Skeleton-based
Action Recognition [88.34182299496074]
Action labels are only available on a source dataset, but unavailable on a target dataset in the training stage.
We utilize a self-supervision scheme to reduce the domain shift between two skeleton-based action datasets.
By segmenting and permuting temporal segments or human body parts, we design two self-supervised learning classification tasks.
arXiv Detail & Related papers (2022-07-17T07:05:39Z) - Benchmarking Node Outlier Detection on Graphs [90.29966986023403]
Graph outlier detection is an emerging but crucial machine learning task with numerous applications.
We present the first comprehensive unsupervised node outlier detection benchmark for graphs called UNOD.
arXiv Detail & Related papers (2022-06-21T01:46:38Z) - Learning with Neighbor Consistency for Noisy Labels [69.83857578836769]
We present a method for learning from noisy labels that leverages similarities between training examples in feature space.
We evaluate our method on datasets evaluating both synthetic (CIFAR-10, CIFAR-100) and realistic (mini-WebVision, Clothing1M, mini-ImageNet-Red) noise.
arXiv Detail & Related papers (2022-02-04T15:46:27Z) - Human-in-the-Loop Disinformation Detection: Stance, Sentiment, or
Something Else? [93.91375268580806]
Both politics and pandemics have recently provided ample motivation for the development of machine learning-enabled disinformation (a.k.a. fake news) detection algorithms.
Existing literature has focused primarily on the fully-automated case, but the resulting techniques cannot reliably detect disinformation on the varied topics, sources, and time scales required for military applications.
By leveraging an already-available analyst as a human-in-the-loop, canonical machine learning techniques of sentiment analysis, aspect-based sentiment analysis, and stance detection become plausible methods to use for a partially-automated disinformation detection system.
arXiv Detail & Related papers (2021-11-09T13:30:34Z) - Visualization of Supervised and Self-Supervised Neural Networks via
Attribution Guided Factorization [87.96102461221415]
We develop an algorithm that provides per-class explainability.
In an extensive battery of experiments, we demonstrate the ability of our methods to class-specific visualization.
arXiv Detail & Related papers (2020-12-03T18:48:39Z) - Region Comparison Network for Interpretable Few-shot Image
Classification [97.97902360117368]
Few-shot image classification has been proposed to effectively use only a limited number of labeled examples to train models for new classes.
We propose a metric learning based method named Region Comparison Network (RCN), which is able to reveal how few-shot learning works.
We also present a new way to generalize the interpretability from the level of tasks to categories.
arXiv Detail & Related papers (2020-09-08T07:29:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.