Standalone Neural ODEs with Sensitivity Analysis
- URL: http://arxiv.org/abs/2205.13933v1
- Date: Fri, 27 May 2022 12:16:53 GMT
- Title: Standalone Neural ODEs with Sensitivity Analysis
- Authors: Rym Jaroudi, Luk\'a\v{s} Mal\'y, Gabriel Eilertsen, Tomas B.
Johansson, Jonas Unger, George Baravdish
- Abstract summary: This paper presents a continuous-depth neural ODE model capable of describing a full deep neural network.
We present a general formulation of the neural sensitivity problem and show how it is used in the NCG training.
Our evaluations demonstrate that our novel formulations lead to increased robustness and performance as compared to ResNet models.
- Score: 5.565364597145569
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents the Standalone Neural ODE (sNODE), a continuous-depth
neural ODE model capable of describing a full deep neural network. This uses a
novel nonlinear conjugate gradient (NCG) descent optimization scheme for
training, where the Sobolev gradient can be incorporated to improve smoothness
of model weights. We also present a general formulation of the neural
sensitivity problem and show how it is used in the NCG training. The
sensitivity analysis provides a reliable measure of uncertainty propagation
throughout a network, and can be used to study model robustness and to generate
adversarial attacks. Our evaluations demonstrate that our novel formulations
lead to increased robustness and performance as compared to ResNet models, and
that it opens up for new opportunities for designing and developing machine
learning with improved explainability.
Related papers
- Feedback Favors the Generalization of Neural ODEs [24.342023073252395]
We present feedback neural networks, showing that a feedback loop can flexibly correct the learned latent dynamics of neural ordinary differential equations (neural ODEs)
The feedback neural network is a novel two-DOF neural network, which possesses robust performance in unseen scenarios with no loss of accuracy performance on previous tasks.
arXiv Detail & Related papers (2024-10-14T08:09:45Z) - CGNSDE: Conditional Gaussian Neural Stochastic Differential Equation for Modeling Complex Systems and Data Assimilation [1.4322470793889193]
A new knowledge-based and machine learning hybrid modeling approach, called conditional neural differential equation (CGNSDE), is developed.
In contrast to the standard neural network predictive models, the CGNSDE is designed to effectively tackle both forward prediction tasks and inverse state estimation problems.
arXiv Detail & Related papers (2024-04-10T05:32:03Z) - ConCerNet: A Contrastive Learning Based Framework for Automated
Conservation Law Discovery and Trustworthy Dynamical System Prediction [82.81767856234956]
This paper proposes a new learning framework named ConCerNet to improve the trustworthiness of the DNN based dynamics modeling.
We show that our method consistently outperforms the baseline neural networks in both coordinate error and conservation metrics.
arXiv Detail & Related papers (2023-02-11T21:07:30Z) - NCTV: Neural Clamping Toolkit and Visualization for Neural Network
Calibration [66.22668336495175]
A lack of consideration for neural network calibration will not gain trust from humans.
We introduce the Neural Clamping Toolkit, the first open-source framework designed to help developers employ state-of-the-art model-agnostic calibrated models.
arXiv Detail & Related papers (2022-11-29T15:03:05Z) - What Can the Neural Tangent Kernel Tell Us About Adversarial Robustness? [0.0]
We study adversarial examples of trained neural networks through analytical tools afforded by recent theory advances connecting neural networks and kernel methods.
We show how NTKs allow to generate adversarial examples in a training-free'' fashion, and demonstrate that they transfer to fool their finite-width neural net counterparts in the lazy'' regime.
arXiv Detail & Related papers (2022-10-11T16:11:48Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
We introduce a new class of physics-informed neural networks-EINN-crafted for epidemic forecasting.
We investigate how to leverage both the theoretical flexibility provided by mechanistic models as well as the data-driven expressability afforded by AI models.
arXiv Detail & Related papers (2022-02-21T18:59:03Z) - Sparse Flows: Pruning Continuous-depth Models [107.98191032466544]
We show that pruning improves generalization for neural ODEs in generative modeling.
We also show that pruning finds minimal and efficient neural ODE representations with up to 98% less parameters compared to the original network, without loss of accuracy.
arXiv Detail & Related papers (2021-06-24T01:40:17Z) - Modeling the Nonsmoothness of Modern Neural Networks [35.93486244163653]
We quantify the nonsmoothness using a feature named the sum of the magnitude of peaks (SMP)
We envision that the nonsmoothness feature can potentially be used as a forensic tool for regression-based applications of neural networks.
arXiv Detail & Related papers (2021-03-26T20:55:19Z) - Modeling from Features: a Mean-field Framework for Over-parameterized
Deep Neural Networks [54.27962244835622]
This paper proposes a new mean-field framework for over- parameterized deep neural networks (DNNs)
In this framework, a DNN is represented by probability measures and functions over its features in the continuous limit.
We illustrate the framework via the standard DNN and the Residual Network (Res-Net) architectures.
arXiv Detail & Related papers (2020-07-03T01:37:16Z) - Stochasticity in Neural ODEs: An Empirical Study [68.8204255655161]
Regularization of neural networks (e.g. dropout) is a widespread technique in deep learning that allows for better generalization.
We show that data augmentation during the training improves the performance of both deterministic and versions of the same model.
However, the improvements obtained by the data augmentation completely eliminate the empirical regularization gains, making the performance of neural ODE and neural SDE negligible.
arXiv Detail & Related papers (2020-02-22T22:12:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.