CGNSDE: Conditional Gaussian Neural Stochastic Differential Equation for Modeling Complex Systems and Data Assimilation
- URL: http://arxiv.org/abs/2404.06749v1
- Date: Wed, 10 Apr 2024 05:32:03 GMT
- Title: CGNSDE: Conditional Gaussian Neural Stochastic Differential Equation for Modeling Complex Systems and Data Assimilation
- Authors: Chuanqi Chen, Nan Chen, Jin-Long Wu,
- Abstract summary: A new knowledge-based and machine learning hybrid modeling approach, called conditional neural differential equation (CGNSDE), is developed.
In contrast to the standard neural network predictive models, the CGNSDE is designed to effectively tackle both forward prediction tasks and inverse state estimation problems.
- Score: 1.4322470793889193
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A new knowledge-based and machine learning hybrid modeling approach, called conditional Gaussian neural stochastic differential equation (CGNSDE), is developed to facilitate modeling complex dynamical systems and implementing analytic formulae of the associated data assimilation (DA). In contrast to the standard neural network predictive models, the CGNSDE is designed to effectively tackle both forward prediction tasks and inverse state estimation problems. The CGNSDE starts by exploiting a systematic causal inference via information theory to build a simple knowledge-based nonlinear model that nevertheless captures as much explainable physics as possible. Then, neural networks are supplemented to the knowledge-based model in a specific way, which not only characterizes the remaining features that are challenging to model with simple forms but also advances the use of analytic formulae to efficiently compute the nonlinear DA solution. These analytic formulae are used as an additional computationally affordable loss to train the neural networks that directly improve the DA accuracy. This DA loss function promotes the CGNSDE to capture the interactions between state variables and thus advances its modeling skills. With the DA loss, the CGNSDE is more capable of estimating extreme events and quantifying the associated uncertainty. Furthermore, crucial physical properties in many complex systems, such as the translate-invariant local dependence of state variables, can significantly simplify the neural network structures and facilitate the CGNSDE to be applied to high-dimensional systems. Numerical experiments based on chaotic systems with intermittency and strong non-Gaussian features indicate that the CGNSDE outperforms knowledge-based regression models, and the DA loss further enhances the modeling skills of the CGNSDE.
Related papers
- Generalized Factor Neural Network Model for High-dimensional Regression [50.554377879576066]
We tackle the challenges of modeling high-dimensional data sets with latent low-dimensional structures hidden within complex, non-linear, and noisy relationships.
Our approach enables a seamless integration of concepts from non-parametric regression, factor models, and neural networks for high-dimensional regression.
arXiv Detail & Related papers (2025-02-16T23:13:55Z) - Neural Port-Hamiltonian Differential Algebraic Equations for Compositional Learning of Electrical Networks [20.12750360095627]
We develop compositional learning algorithms for coupled dynamical systems.
We use neural networks to parametrize unknown terms in differential and algebraic components of a port-Hamiltonian DAE.
We train individual N-PHDAE models for separate grid components, before coupling them to accurately predict the behavior of larger-scale networks.
arXiv Detail & Related papers (2024-12-15T15:13:11Z) - SINDyG: Sparse Identification of Nonlinear Dynamical Systems from Graph-Structured Data [0.27624021966289597]
We develop a new method called Sparse Identification of Dynamical Systems from Graph-structured data (SINDyG)
SINDyG incorporates the network structure into sparse regression to identify model parameters that explain the underlying network dynamics.
Our experiments validate the improved accuracy and simplicity of discovered network dynamics.
arXiv Detail & Related papers (2024-09-02T17:51:37Z) - eXponential FAmily Dynamical Systems (XFADS): Large-scale nonlinear Gaussian state-space modeling [9.52474299688276]
We introduce a low-rank structured variational autoencoder framework for nonlinear state-space graphical models.
We show that our approach consistently demonstrates the ability to learn a more predictive generative model.
arXiv Detail & Related papers (2024-03-03T02:19:49Z) - Mechanistic Neural Networks for Scientific Machine Learning [58.99592521721158]
We present Mechanistic Neural Networks, a neural network design for machine learning applications in the sciences.
It incorporates a new Mechanistic Block in standard architectures to explicitly learn governing differential equations as representations.
Central to our approach is a novel Relaxed Linear Programming solver (NeuRLP) inspired by a technique that reduces solving linear ODEs to solving linear programs.
arXiv Detail & Related papers (2024-02-20T15:23:24Z) - Analysis of Numerical Integration in RNN-Based Residuals for Fault
Diagnosis of Dynamic Systems [0.6999740786886536]
The paper includes a case study of a heavy-duty truck's after-treatment system to highlight the potential of these techniques for improving fault diagnosis performance.
Data-driven modeling and machine learning are widely used to model the behavior of dynamic systems.
arXiv Detail & Related papers (2023-05-08T12:48:18Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Stretched and measured neural predictions of complex network dynamics [2.1024950052120417]
Data-driven approximations of differential equations present a promising alternative to traditional methods for uncovering a model of dynamical systems.
A recently employed machine learning tool for studying dynamics is neural networks, which can be used for data-driven solution finding or discovery of differential equations.
We show that extending the model's generalizability beyond traditional statistical learning theory limits is feasible.
arXiv Detail & Related papers (2023-01-12T09:44:59Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
We introduce a new class of physics-informed neural networks-EINN-crafted for epidemic forecasting.
We investigate how to leverage both the theoretical flexibility provided by mechanistic models as well as the data-driven expressability afforded by AI models.
arXiv Detail & Related papers (2022-02-21T18:59:03Z) - Closed-form Continuous-Depth Models [99.40335716948101]
Continuous-depth neural models rely on advanced numerical differential equation solvers.
We present a new family of models, termed Closed-form Continuous-depth (CfC) networks, that are simple to describe and at least one order of magnitude faster.
arXiv Detail & Related papers (2021-06-25T22:08:51Z) - Stochasticity in Neural ODEs: An Empirical Study [68.8204255655161]
Regularization of neural networks (e.g. dropout) is a widespread technique in deep learning that allows for better generalization.
We show that data augmentation during the training improves the performance of both deterministic and versions of the same model.
However, the improvements obtained by the data augmentation completely eliminate the empirical regularization gains, making the performance of neural ODE and neural SDE negligible.
arXiv Detail & Related papers (2020-02-22T22:12:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.