Optimizing Objective Functions from Trained ReLU Neural Networks via
Sampling
- URL: http://arxiv.org/abs/2205.14189v1
- Date: Fri, 27 May 2022 18:35:48 GMT
- Title: Optimizing Objective Functions from Trained ReLU Neural Networks via
Sampling
- Authors: Georgia Perakis and Asterios Tsiourvas
- Abstract summary: This paper introduces scalable, sampling-based algorithms that optimize trained neural networks with ReLU activations.
We first propose an iterative algorithm that takes advantage of the piecewise linear structure of ReLU neural networks.
We then extend this approach by searching around the neighborhood of the LP solution computed at each iteration.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper introduces scalable, sampling-based algorithms that optimize
trained neural networks with ReLU activations. We first propose an iterative
algorithm that takes advantage of the piecewise linear structure of ReLU neural
networks and reduces the initial mixed-integer optimization problem (MIP) into
multiple easy-to-solve linear optimization problems (LPs) through sampling.
Subsequently, we extend this approach by searching around the neighborhood of
the LP solution computed at each iteration. This scheme allows us to devise a
second, enhanced algorithm that reduces the initial MIP problem into smaller,
easier-to-solve MIPs. We analytically show the convergence of the methods and
we provide a sample complexity guarantee. We also validate the performance of
our algorithms by comparing them against state-of-the-art MIP-based methods.
Finally, we show computationally how the sampling algorithms can be used
effectively to warm-start MIP-based methods.
Related papers
- A Learned Proximal Alternating Minimization Algorithm and Its Induced Network for a Class of Two-block Nonconvex and Nonsmooth Optimization [4.975853671529418]
This work proposes a general learned alternating minimization algorithm, LPAM, for solving learnable two-block nonsmooth problems.
The proposed LPAM-net is parameter-efficient and has favourable performance in comparison with some state-of-the-art methods.
arXiv Detail & Related papers (2024-11-10T02:02:32Z) - Quantum-Based Feature Selection for Multi-classification Problem in
Complex Systems with Edge Computing [15.894122816099133]
A quantum-based feature selection algorithm for the multi-classification problem, namely, QReliefF, is proposed.
Our algorithm is superior in finding the nearest neighbor, reducing the complexity from O(M) to O(sqrt(M)).
arXiv Detail & Related papers (2023-10-01T03:57:13Z) - Unfolded proximal neural networks for robust image Gaussian denoising [7.018591019975253]
We propose a unified framework to build PNNs for the Gaussian denoising task, based on both the dual-FB and the primal-dual Chambolle-Pock algorithms.
We also show that accelerated versions of these algorithms enable skip connections in the associated NN layers.
arXiv Detail & Related papers (2023-08-06T15:32:16Z) - Composite Optimization Algorithms for Sigmoid Networks [3.160070867400839]
We propose the composite optimization algorithms based on the linearized proximal algorithms and the alternating direction of multipliers.
Numerical experiments on Frank's function fitting show that the proposed algorithms perform satisfactorily robustly.
arXiv Detail & Related papers (2023-03-01T15:30:29Z) - Linearization Algorithms for Fully Composite Optimization [61.20539085730636]
This paper studies first-order algorithms for solving fully composite optimization problems convex compact sets.
We leverage the structure of the objective by handling differentiable and non-differentiable separately, linearizing only the smooth parts.
arXiv Detail & Related papers (2023-02-24T18:41:48Z) - An Empirical Evaluation of Posterior Sampling for Constrained
Reinforcement Learning [7.3449418475577595]
We study a posterior sampling approach to efficient exploration in constrained reinforcement learning.
We propose two simple algorithms that are more efficient statistically, simpler to implement and computationally cheaper.
arXiv Detail & Related papers (2022-09-08T06:52:49Z) - Adaptive Sampling for Best Policy Identification in Markov Decision
Processes [79.4957965474334]
We investigate the problem of best-policy identification in discounted Markov Decision (MDPs) when the learner has access to a generative model.
The advantages of state-of-the-art algorithms are discussed and illustrated.
arXiv Detail & Related papers (2020-09-28T15:22:24Z) - Accelerated Message Passing for Entropy-Regularized MAP Inference [89.15658822319928]
Maximum a posteriori (MAP) inference in discrete-valued random fields is a fundamental problem in machine learning.
Due to the difficulty of this problem, linear programming (LP) relaxations are commonly used to derive specialized message passing algorithms.
We present randomized methods for accelerating these algorithms by leveraging techniques that underlie classical accelerated gradient.
arXiv Detail & Related papers (2020-07-01T18:43:32Z) - Nearly Linear Row Sampling Algorithm for Quantile Regression [54.75919082407094]
We give a row sampling algorithm for the quantile loss function with sample complexity nearly linear in the dimensionality of the data.
Based upon our row sampling algorithm, we give the fastest known algorithm for quantile regression and a graph sparsification algorithm for balanced directed graphs.
arXiv Detail & Related papers (2020-06-15T13:40:07Z) - Iterative Algorithm Induced Deep-Unfolding Neural Networks: Precoding
Design for Multiuser MIMO Systems [59.804810122136345]
We propose a framework for deep-unfolding, where a general form of iterative algorithm induced deep-unfolding neural network (IAIDNN) is developed.
An efficient IAIDNN based on the structure of the classic weighted minimum mean-square error (WMMSE) iterative algorithm is developed.
We show that the proposed IAIDNN efficiently achieves the performance of the iterative WMMSE algorithm with reduced computational complexity.
arXiv Detail & Related papers (2020-06-15T02:57:57Z) - Channel Assignment in Uplink Wireless Communication using Machine
Learning Approach [54.012791474906514]
This letter investigates a channel assignment problem in uplink wireless communication systems.
Our goal is to maximize the sum rate of all users subject to integer channel assignment constraints.
Due to high computational complexity, machine learning approaches are employed to obtain computational efficient solutions.
arXiv Detail & Related papers (2020-01-12T15:54:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.