Unfolded proximal neural networks for robust image Gaussian denoising
- URL: http://arxiv.org/abs/2308.03139v2
- Date: Wed, 21 Aug 2024 14:26:51 GMT
- Title: Unfolded proximal neural networks for robust image Gaussian denoising
- Authors: Hoang Trieu Vy Le, Audrey Repetti, Nelly Pustelnik,
- Abstract summary: We propose a unified framework to build PNNs for the Gaussian denoising task, based on both the dual-FB and the primal-dual Chambolle-Pock algorithms.
We also show that accelerated versions of these algorithms enable skip connections in the associated NN layers.
- Score: 7.018591019975253
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A common approach to solve inverse imaging problems relies on finding a maximum a posteriori (MAP) estimate of the original unknown image, by solving a minimization problem. In thiscontext, iterative proximal algorithms are widely used, enabling to handle non-smooth functions and linear operators. Recently, these algorithms have been paired with deep learning strategies, to further improve the estimate quality. In particular, proximal neural networks (PNNs) have been introduced, obtained by unrolling a proximal algorithm as for finding a MAP estimate, but over a fixed number of iterations, with learned linear operators and parameters. As PNNs are based on optimization theory, they are very flexible, and can be adapted to any image restoration task, as soon as a proximal algorithm can solve it. They further have much lighter architectures than traditional networks. In this article we propose a unified framework to build PNNs for the Gaussian denoising task, based on both the dual-FB and the primal-dual Chambolle-Pock algorithms. We further show that accelerated inertial versions of these algorithms enable skip connections in the associated NN layers. We propose different learning strategies for our PNN framework, and investigate their robustness (Lipschitz property) and denoising efficiency. Finally, we assess the robustness of our PNNs when plugged in a forward-backward algorithm for an image deblurring problem.
Related papers
- A lifted Bregman strategy for training unfolded proximal neural network Gaussian denoisers [8.343594411714934]
Unfolded proximal neural networks (PNNs) form a family of methods that combines deep learning and proximal optimization approaches.
We propose a lifted training formulation based on Bregman distances for unfolded PNNs.
We assess the behaviour of the proposed training approach for PNNs through numerical simulations on image denoising.
arXiv Detail & Related papers (2024-08-16T13:41:34Z) - A Compound Gaussian Least Squares Algorithm and Unrolled Network for
Linear Inverse Problems [1.283555556182245]
This paper develops two new approaches to solving linear inverse problems.
The first is an iterative algorithm that minimizes a regularized least squares objective function.
The second is a deep neural network that corresponds to an "unrolling" or "unfolding" of the iterative algorithm.
arXiv Detail & Related papers (2023-05-18T17:05:09Z) - The Cascaded Forward Algorithm for Neural Network Training [61.06444586991505]
We propose a new learning framework for neural networks, namely Cascaded Forward (CaFo) algorithm, which does not rely on BP optimization as that in FF.
Unlike FF, our framework directly outputs label distributions at each cascaded block, which does not require generation of additional negative samples.
In our framework each block can be trained independently, so it can be easily deployed into parallel acceleration systems.
arXiv Detail & Related papers (2023-03-17T02:01:11Z) - AskewSGD : An Annealed interval-constrained Optimisation method to train
Quantized Neural Networks [12.229154524476405]
We develop a new algorithm, Annealed Skewed SGD - AskewSGD - for training deep neural networks (DNNs) with quantized weights.
Unlike algorithms with active sets and feasible directions, AskewSGD avoids projections or optimization under the entire feasible set.
Experimental results show that the AskewSGD algorithm performs better than or on par with state of the art methods in classical benchmarks.
arXiv Detail & Related papers (2022-11-07T18:13:44Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
We improve the theoretical and empirical performance of neural-network(NN)-based active learning algorithms for the non-parametric streaming setting.
We introduce two regret metrics by minimizing the population loss that are more suitable in active learning than the one used in state-of-the-art (SOTA) related work.
arXiv Detail & Related papers (2022-10-02T05:03:38Z) - Revisiting Recursive Least Squares for Training Deep Neural Networks [10.44340837533087]
Recursive least squares (RLS) algorithms were once widely used for training small-scale neural networks, due to their fast convergence.
Previous RLS algorithms are unsuitable for training deep neural networks (DNNs), since they have high computational complexity and too many preconditions.
We propose three novel RLS optimization algorithms for training feedforward neural networks, convolutional neural networks and recurrent neural networks.
arXiv Detail & Related papers (2021-09-07T17:43:51Z) - Lower Bounds and Optimal Algorithms for Smooth and Strongly Convex
Decentralized Optimization Over Time-Varying Networks [79.16773494166644]
We consider the task of minimizing the sum of smooth and strongly convex functions stored in a decentralized manner across the nodes of a communication network.
We design two optimal algorithms that attain these lower bounds.
We corroborate the theoretical efficiency of these algorithms by performing an experimental comparison with existing state-of-the-art methods.
arXiv Detail & Related papers (2021-06-08T15:54:44Z) - Evolving Reinforcement Learning Algorithms [186.62294652057062]
We propose a method for meta-learning reinforcement learning algorithms.
The learned algorithms are domain-agnostic and can generalize to new environments not seen during training.
We highlight two learned algorithms which obtain good generalization performance over other classical control tasks, gridworld type tasks, and Atari games.
arXiv Detail & Related papers (2021-01-08T18:55:07Z) - Towards Optimally Efficient Tree Search with Deep Learning [76.64632985696237]
This paper investigates the classical integer least-squares problem which estimates signals integer from linear models.
The problem is NP-hard and often arises in diverse applications such as signal processing, bioinformatics, communications and machine learning.
We propose a general hyper-accelerated tree search (HATS) algorithm by employing a deep neural network to estimate the optimal estimation for the underlying simplified memory-bounded A* algorithm.
arXiv Detail & Related papers (2021-01-07T08:00:02Z) - A Dynamical View on Optimization Algorithms of Overparameterized Neural
Networks [23.038631072178735]
We consider a broad class of optimization algorithms that are commonly used in practice.
As a consequence, we can leverage the convergence behavior of neural networks.
We believe our approach can also be extended to other optimization algorithms and network theory.
arXiv Detail & Related papers (2020-10-25T17:10:22Z) - Communication-Efficient Distributed Stochastic AUC Maximization with
Deep Neural Networks [50.42141893913188]
We study a distributed variable for large-scale AUC for a neural network as with a deep neural network.
Our model requires a much less number of communication rounds and still a number of communication rounds in theory.
Our experiments on several datasets show the effectiveness of our theory and also confirm our theory.
arXiv Detail & Related papers (2020-05-05T18:08:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.