論文の概要: Deep Learning with Label Noise: A Hierarchical Approach
- arxiv url: http://arxiv.org/abs/2205.14299v1
- Date: Sat, 28 May 2022 02:27:02 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-31 14:47:12.307941
- Title: Deep Learning with Label Noise: A Hierarchical Approach
- Title(参考訳): ラベルノイズを用いたディープラーニング:階層的アプローチ
- Authors: Li Chen, Ningyuan Huang, Cong Mu, Hayden S. Helm, Kate Lytvynets,
Weiwei Yang, Carey E. Priebe
- Abstract要約: 深層学習モデルの学習において,ラベル階層を組み込んだ単純な階層的手法を提案する。
当社のアプローチでは,ネットワークアーキテクチャや最適化手順の変更は必要ありません。
我々の階層的アプローチは、ラベルノイズによる学習において、通常のディープニューラルネットワークを改善する。
- 参考スコア(独自算出の注目度): 14.28389712842577
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep neural networks are susceptible to label noise. Existing methods to
improve robustness, such as meta-learning and regularization, usually require
significant change to the network architecture or careful tuning of the
optimization procedure. In this work, we propose a simple hierarchical approach
that incorporates a label hierarchy when training the deep learning models. Our
approach requires no change of the network architecture or the optimization
procedure. We investigate our hierarchical network through a wide range of
simulated and real datasets and various label noise types. Our hierarchical
approach improves upon regular deep neural networks in learning with label
noise. Combining our hierarchical approach with pre-trained models achieves
state-of-the-art performance in real-world noisy datasets.
- Abstract(参考訳): ディープニューラルネットワークはラベルノイズの影響を受けやすい。
メタラーニングや正規化といったロバスト性を改善する既存の手法は通常、ネットワークアーキテクチャに大きな変更や最適化手順の注意深く調整する必要がある。
本研究では,ディープラーニングモデルの学習時にラベル階層を組み込んだ単純な階層的手法を提案する。
このアプローチでは,ネットワークアーキテクチャや最適化手順の変更は不要である。
シミュレーションおよび実データと様々なラベルノイズタイプを用いて階層ネットワークを調査した。
我々の階層的アプローチは、ラベルノイズによる学習において、通常のディープニューラルネットワークを改善する。
事前学習されたモデルと階層的アプローチを組み合わせることで、実世界の騒がしいデータセットにおける最先端のパフォーマンスを実現します。
関連論文リスト
- CaAdam: Improving Adam optimizer using connection aware methods [0.0]
我々はAdamにインスパイアされた新しい手法を導入し、収束速度を高め、損失関数の最小化を実現する。
Adamを含む従来のプロキシは、アーキテクチャの詳細を考慮せずに、ニューラルネットワーク全体で均一またはグローバルに調整された学習率を適用している。
我々のアルゴリズムであるCaAdamは、アーキテクチャ情報を慎重に設計することで、接続対応の最適化を導入することで、見落としている領域を探索する。
論文 参考訳(メタデータ) (2024-10-31T17:59:46Z) - Informed deep hierarchical classification: a non-standard analysis inspired approach [0.0]
出力層の前に配置された特定のプロジェクション演算子を備えた多出力ディープニューラルネットワークで構成されている。
このようなアーキテクチャの設計は、LH-DNN(Lexicographic Hybrid Deep Neural Network)と呼ばれ、異なる研究分野と非常に離れた研究分野のツールを組み合わせることで実現されている。
アプローチの有効性を評価するために、階層的な分類タスクに適した畳み込みニューラルネットワークであるB-CNNと比較する。
論文 参考訳(メタデータ) (2024-09-25T14:12:50Z) - Principled Architecture-aware Scaling of Hyperparameters [69.98414153320894]
高品質のディープニューラルネットワークをトレーニングするには、非自明で高価なプロセスである適切なハイパーパラメータを選択する必要がある。
本研究では,ネットワークアーキテクチャにおける初期化と最大学習率の依存性を正確に評価する。
ネットワークランキングは、ベンチマークのトレーニングネットワークにより容易に変更可能であることを実証する。
論文 参考訳(メタデータ) (2024-02-27T11:52:49Z) - Learning Large-scale Neural Fields via Context Pruned Meta-Learning [60.93679437452872]
本稿では,大規模ニューラルネットワーク学習のための最適化に基づくメタラーニング手法を提案する。
メタテスト時間における勾配再スケーリングは、非常に高品質なニューラルネットワークの学習を可能にすることを示す。
我々のフレームワークは、モデルに依存しない、直感的で、実装が容易であり、幅広い信号に対する大幅な再構成改善を示す。
論文 参考訳(メタデータ) (2023-02-01T17:32:16Z) - Adaptive Convolutional Dictionary Network for CT Metal Artifact
Reduction [62.691996239590125]
本稿では,金属人工物削減のための適応畳み込み辞書ネットワーク(ACDNet)を提案する。
我々のACDNetは、トレーニングデータを介して、アーティファクトフリーCT画像の事前を自動で学習し、入力されたCT画像ごとに表現カーネルを適応的に調整することができる。
本手法は,モデルに基づく手法の明確な解釈可能性を継承し,学習に基づく手法の強力な表現能力を維持する。
論文 参考訳(メタデータ) (2022-05-16T06:49:36Z) - Recurrent Neural Networks with Mixed Hierarchical Structures and EM
Algorithm for Natural Language Processing [9.645196221785694]
我々は潜在指標層と呼ばれる手法を開発し、暗黙的な階層的情報を特定し学習する。
また、トレーニングにおいて潜在指標層を扱うEMアルゴリズムを開発した。
ブートストラップトレーニングによるEM-HRNNモデルは,文書分類タスクにおいて,他のRNNモデルよりも優れていることを示す。
論文 参考訳(メタデータ) (2022-01-21T23:08:33Z) - SIRe-Networks: Skip Connections over Interlaced Multi-Task Learning and
Residual Connections for Structure Preserving Object Classification [28.02302915971059]
本稿では、オブジェクト分類タスクにおける消失勾配を低減するために、SIReを定義したインターレース型マルチタスク学習戦略を提案する。
提案手法は、自動エンコーダを介して入力画像構造を保存することにより、畳み込みニューラルネットワーク(CNN)を直接改善する。
提案手法を検証するため、SIRe戦略を介して単純なCNNと有名なネットワークの様々な実装を拡張し、CIFAR100データセットで広範囲にテストする。
論文 参考訳(メタデータ) (2021-10-06T13:54:49Z) - Firefly Neural Architecture Descent: a General Approach for Growing
Neural Networks [50.684661759340145]
firefly neural architecture descentは、ニューラルネットワークを漸進的かつ動的に成長させるための一般的なフレームワークである。
ホタルの降下は、より広く、より深くネットワークを柔軟に成長させ、正確だがリソース効率のよいニューラルアーキテクチャを学習するために応用できることを示す。
特に、サイズは小さいが、最先端の手法で学習したネットワークよりも平均精度が高いネットワークを学習する。
論文 参考訳(メタデータ) (2021-02-17T04:47:18Z) - Ensemble Wrapper Subsampling for Deep Modulation Classification [70.91089216571035]
受信した無線信号のサブサンプリングは、ハードウェア要件と信号処理アルゴリズムの計算コストを緩和するために重要である。
本稿では,無線通信システムにおけるディープラーニングを用いた自動変調分類のためのサブサンプリング手法を提案する。
論文 参考訳(メタデータ) (2020-05-10T06:11:13Z) - Dynamic Hierarchical Mimicking Towards Consistent Optimization
Objectives [73.15276998621582]
一般化能力を高めたCNN訓練を推進するための汎用的特徴学習機構を提案する。
DSNに部分的にインスパイアされた私たちは、ニューラルネットワークの中間層から微妙に設計されたサイドブランチをフォークしました。
カテゴリ認識タスクとインスタンス認識タスクの両方の実験により,提案手法の大幅な改善が示された。
論文 参考訳(メタデータ) (2020-03-24T09:56:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。