Online Learning with Bounded Recall
- URL: http://arxiv.org/abs/2205.14519v2
- Date: Fri, 31 May 2024 19:55:56 GMT
- Title: Online Learning with Bounded Recall
- Authors: Jon Schneider, Kiran Vodrahalli,
- Abstract summary: We study the problem of full-information online learning in the "bounded recall" setting popular in the study of repeated games.
An online learning algorithm $mathcalA$ is $M$-$textitbounded-recall$ if its output at time $t$ can be written as a function of the $M$ previous rewards.
- Score: 11.046741824529107
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We study the problem of full-information online learning in the "bounded recall" setting popular in the study of repeated games. An online learning algorithm $\mathcal{A}$ is $M$-$\textit{bounded-recall}$ if its output at time $t$ can be written as a function of the $M$ previous rewards (and not e.g. any other internal state of $\mathcal{A}$). We first demonstrate that a natural approach to constructing bounded-recall algorithms from mean-based no-regret learning algorithms (e.g., running Hedge over the last $M$ rounds) fails, and that any such algorithm incurs constant regret per round. We then construct a stationary bounded-recall algorithm that achieves a per-round regret of $\Theta(1/\sqrt{M})$, which we complement with a tight lower bound. Finally, we show that unlike the perfect recall setting, any low regret bound bounded-recall algorithm must be aware of the ordering of the past $M$ losses -- any bounded-recall algorithm which plays a symmetric function of the past $M$ losses must incur constant regret per round.
Related papers
- Horizon-free Reinforcement Learning in Adversarial Linear Mixture MDPs [72.40181882916089]
We show that our algorithm achieves an $tildeObig((d+log (|mathcalS|2 |mathcalA|))sqrtKbig)$ regret with full-information feedback, where $d$ is the dimension of a known feature mapping linearly parametrizing the unknown transition kernel of the MDP, $K$ is the number of episodes, $|mathcalS|$ and $|mathcalA|$ are the cardinalities of the state and action spaces
arXiv Detail & Related papers (2023-05-15T05:37:32Z) - Improved Kernel Alignment Regret Bound for Online Kernel Learning [11.201662566974232]
We propose an algorithm whose regret bound and computational complexity are better than previous results.
If the eigenvalues of the kernel matrix decay exponentially, then our algorithm enjoys a regret of $O(sqrtmathcalA_T)$ at a computational complexity of $O(ln2T)$.
We extend our algorithm to batch learning and obtain a $O(frac1TsqrtmathbbE[mathcalA_T])$ excess risk bound which improves the previous $O
arXiv Detail & Related papers (2022-12-26T02:32:20Z) - Corralling a Larger Band of Bandits: A Case Study on Switching Regret
for Linear Bandits [99.86860277006318]
We consider the problem of combining and learning over a set of adversarial algorithms with the goal of adaptively tracking the best one on the fly.
The CORRAL of Agarwal et al. achieves this goal with a regret overhead of order $widetildeO(sqrtd S T)$ where $M$ is the number of base algorithms and $T$ is the time horizon.
Motivated by this issue, we propose a new recipe to corral a larger band of bandit algorithms whose regret overhead has only emphlogarithmic dependence on $M$ as long
arXiv Detail & Related papers (2022-02-12T21:55:44Z) - Logarithmic Regret from Sublinear Hints [76.87432703516942]
We show that an algorithm can obtain $O(log T)$ regret with just $O(sqrtT)$ hints under a natural query model.
We also show that $o(sqrtT)$ hints cannot guarantee better than $Omega(sqrtT)$ regret.
arXiv Detail & Related papers (2021-11-09T16:50:18Z) - Contextual Recommendations and Low-Regret Cutting-Plane Algorithms [49.91214213074933]
We consider the following variant of contextual linear bandits motivated by routing applications in navigational engines and recommendation systems.
We design novel cutting-plane algorithms with low "regret" -- the total distance between the true point $w*$ and the hyperplanes the separation oracle returns.
arXiv Detail & Related papers (2021-06-09T05:39:05Z) - Optimal Regret Algorithm for Pseudo-1d Bandit Convex Optimization [51.23789922123412]
We study online learning with bandit feedback (i.e. learner has access to only zeroth-order oracle) where cost/reward functions admit a "pseudo-1d" structure.
We show a lower bound of $min(sqrtdT, T3/4)$ for the regret of any algorithm, where $T$ is the number of rounds.
We propose a new algorithm sbcalg that combines randomized online gradient descent with a kernelized exponential weights method to exploit the pseudo-1d structure effectively.
arXiv Detail & Related papers (2021-02-15T08:16:51Z) - Taking a hint: How to leverage loss predictors in contextual bandits? [63.546913998407405]
We study learning in contextual bandits with the help of loss predictors.
We show that the optimal regret is $mathcalO(minsqrtT, sqrtmathcalETfrac13)$ when $mathcalE$ is known.
arXiv Detail & Related papers (2020-03-04T07:36:38Z) - Adaptive Online Learning with Varying Norms [45.11667443216861]
We provide an online convex optimization algorithm that outputs points $w_t$ in some domain $W$.
We apply this result to obtain new "full-matrix"-style regret bounds.
arXiv Detail & Related papers (2020-02-10T17:22:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.