Joint Abductive and Inductive Neural Logical Reasoning
- URL: http://arxiv.org/abs/2205.14591v1
- Date: Sun, 29 May 2022 07:41:50 GMT
- Title: Joint Abductive and Inductive Neural Logical Reasoning
- Authors: Zhenwei Tang, Shichao Pei, Xi Peng, Fuzhen Zhuang, Xiangliang Zhang,
Robert Hoehndorf
- Abstract summary: We formulate the problem of the joint abductive and inductive neural logical reasoning (AI-NLR)
First, we incorporate description logic-based ontological axioms to provide the source of concepts.
Then, we represent concepts and queries as fuzzy sets, i.e., sets whose elements have degrees of membership, to bridge concepts and queries with entities.
- Score: 44.36651614420507
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural logical reasoning (NLR) is a fundamental task in knowledge discovery
and artificial intelligence. NLR aims at answering multi-hop queries with
logical operations on structured knowledge bases based on distributed
representations of queries and answers. While previous neural logical reasoners
can give specific entity-level answers, i.e., perform inductive reasoning from
the perspective of logic theory, they are not able to provide descriptive
concept-level answers, i.e., perform abductive reasoning, where each concept is
a summary of a set of entities. In particular, the abductive reasoning task
attempts to infer the explanations of each query with descriptive concepts,
which make answers comprehensible to users and is of great usefulness in the
field of applied ontology. In this work, we formulate the problem of the joint
abductive and inductive neural logical reasoning (AI-NLR), solving which needs
to address challenges in incorporating, representing, and operating on
concepts. We propose an original solution named ABIN for AI-NLR. Firstly, we
incorporate description logic-based ontological axioms to provide the source of
concepts. Then, we represent concepts and queries as fuzzy sets, i.e., sets
whose elements have degrees of membership, to bridge concepts and queries with
entities. Moreover, we design operators involving concepts on top of the fuzzy
set representation of concepts and queries for optimization and inference.
Extensive experimental results on two real-world datasets demonstrate the
effectiveness of ABIN for AI-NLR.
Related papers
- Disentangling Logic: The Role of Context in Large Language Model Reasoning Capabilities [31.728976421529577]
We investigate the contrast across abstract and contextualized logical problems from a comprehensive set of domains.
We focus on standard propositional logic, specifically propositional deductive and abductive logic reasoning.
Our experiments aim to provide insights into disentangling context in logical reasoning and the true reasoning capabilities of LLMs.
arXiv Detail & Related papers (2024-06-04T21:25:06Z) - LOGICSEG: Parsing Visual Semantics with Neural Logic Learning and
Reasoning [73.98142349171552]
LOGICSEG is a holistic visual semantic that integrates neural inductive learning and logic reasoning with both rich data and symbolic knowledge.
During fuzzy logic-based continuous relaxation, logical formulae are grounded onto data and neural computational graphs, hence enabling logic-induced network training.
These designs together make LOGICSEG a general and compact neural-logic machine that is readily integrated into existing segmentation models.
arXiv Detail & Related papers (2023-09-24T05:43:19Z) - Learning Differentiable Logic Programs for Abstract Visual Reasoning [18.82429807065658]
Differentiable forward reasoning has been developed to integrate reasoning with gradient-based machine learning paradigms.
NEUMANN is a graph-based differentiable forward reasoner, passing messages in a memory-efficient manner and handling structured programs with functors.
We demonstrate that NEUMANN solves visual reasoning tasks efficiently, outperforming neural, symbolic, and neuro-symbolic baselines.
arXiv Detail & Related papers (2023-07-03T11:02:40Z) - Query Structure Modeling for Inductive Logical Reasoning Over Knowledge
Graphs [67.043747188954]
We propose a structure-modeled textual encoding framework for inductive logical reasoning over KGs.
It encodes linearized query structures and entities using pre-trained language models to find answers.
We conduct experiments on two inductive logical reasoning datasets and three transductive datasets.
arXiv Detail & Related papers (2023-05-23T01:25:29Z) - Discourse-Aware Graph Networks for Textual Logical Reasoning [142.0097357999134]
Passage-level logical relations represent entailment or contradiction between propositional units (e.g., a concluding sentence)
We propose logic structural-constraint modeling to solve the logical reasoning QA and introduce discourse-aware graph networks (DAGNs)
The networks first construct logic graphs leveraging in-line discourse connectives and generic logic theories, then learn logic representations by end-to-end evolving the logic relations with an edge-reasoning mechanism and updating the graph features.
arXiv Detail & Related papers (2022-07-04T14:38:49Z) - Abstract Reasoning via Logic-guided Generation [65.92805601327649]
Abstract reasoning, i.e., inferring complicated patterns from given observations, is a central building block of artificial general intelligence.
This paper aims to design a framework for the latter approach and bridge the gap between artificial and human intelligence.
We propose logic-guided generation (LoGe), a novel generative DNN framework that reduces abstract reasoning as an optimization problem in propositional logic.
arXiv Detail & Related papers (2021-07-22T07:28:24Z) - Entropy-based Logic Explanations of Neural Networks [24.43410365335306]
We propose an end-to-end differentiable approach for extracting logic explanations from neural networks.
The method relies on an entropy-based criterion which automatically identifies the most relevant concepts.
We consider four different case studies to demonstrate that: (i) this entropy-based criterion enables the distillation of concise logic explanations in safety-critical domains from clinical data to computer vision; (ii) the proposed approach outperforms state-of-the-art white-box models in terms of classification accuracy.
arXiv Detail & Related papers (2021-06-12T15:50:47Z) - Neural Logic Reasoning [47.622957656745356]
We propose Logic-Integrated Neural Network (LINN) to integrate the power of deep learning and logic reasoning.
LINN learns basic logical operations such as AND, OR, NOT as neural modules, and conducts propositional logical reasoning through the network for inference.
Experiments show that LINN significantly outperforms state-of-the-art recommendation models in Top-K recommendation.
arXiv Detail & Related papers (2020-08-20T14:53:23Z) - Logical Neural Networks [51.46602187496816]
We propose a novel framework seamlessly providing key properties of both neural nets (learning) and symbolic logic (knowledge and reasoning)
Every neuron has a meaning as a component of a formula in a weighted real-valued logic, yielding a highly intepretable disentangled representation.
Inference is omni rather than focused on predefined target variables, and corresponds to logical reasoning.
arXiv Detail & Related papers (2020-06-23T16:55:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.