Disentangling Logic: The Role of Context in Large Language Model Reasoning Capabilities
- URL: http://arxiv.org/abs/2406.02787v1
- Date: Tue, 4 Jun 2024 21:25:06 GMT
- Title: Disentangling Logic: The Role of Context in Large Language Model Reasoning Capabilities
- Authors: Wenyue Hua, Kaijie Zhu, Lingyao Li, Lizhou Fan, Shuhang Lin, Mingyu Jin, Haochen Xue, Zelong Li, JinDong Wang, Yongfeng Zhang,
- Abstract summary: We investigate the contrast across abstract and contextualized logical problems from a comprehensive set of domains.
We focus on standard propositional logic, specifically propositional deductive and abductive logic reasoning.
Our experiments aim to provide insights into disentangling context in logical reasoning and the true reasoning capabilities of LLMs.
- Score: 31.728976421529577
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study intends to systematically disentangle pure logic reasoning and text understanding by investigating the contrast across abstract and contextualized logical problems from a comprehensive set of domains. We explore whether LLMs demonstrate genuine reasoning capabilities across various domains when the underlying logical structure remains constant. We focus on two main questions (1) Can abstract logical problems alone accurately benchmark an LLM's reasoning ability in real-world scenarios, disentangled from contextual support in practical settings? (2) Does fine-tuning LLMs on abstract logic problem generalize to contextualized logic problems and vice versa? To investigate these questions, we focus on standard propositional logic, specifically propositional deductive and abductive logic reasoning. In particular, we construct instantiated datasets for deductive and abductive reasoning with 4 levels of difficulty, encompassing 12 distinct categories or domains based on the categorization of Wikipedia. Our experiments aim to provide insights into disentangling context in logical reasoning and the true reasoning capabilities of LLMs and their generalization potential. The code and dataset are available at: https://github.com/agiresearch/ContextHub.
Related papers
- Leveraging LLMs for Hypothetical Deduction in Logical Inference: A Neuro-Symbolic Approach [11.400815134634016]
We introduce LINA, a neuro-symbolic approach for faithful logical reasoning.
By enabling an LLM to autonomously perform the transition from propositional logic extraction to sophisticated logical reasoning, LINA bolsters the resilience of the reasoning process.
Empirical evaluations demonstrate that LINA substantially outperforms both established propositional logic frameworks and conventional prompting techniques.
arXiv Detail & Related papers (2024-10-29T06:38:46Z) - LogicBench: Towards Systematic Evaluation of Logical Reasoning Ability of Large Language Models [52.03659714625452]
Recently developed large language models (LLMs) have been shown to perform remarkably well on a wide range of language understanding tasks.
But, can they really "reason" over the natural language?
This question has been receiving significant research attention and many reasoning skills such as commonsense, numerical, and qualitative have been studied.
arXiv Detail & Related papers (2024-04-23T21:08:49Z) - Do Large Language Models Understand Logic or Just Mimick Context? [14.081178100662163]
This paper investigates the reasoning capabilities of large language models (LLMs) on two logical reasoning datasets.
It is found that LLMs do not truly understand logical rules; rather, in-context learning has simply enhanced the likelihood of these models arriving at the correct answers.
arXiv Detail & Related papers (2024-02-19T12:12:35Z) - Can LLMs Reason with Rules? Logic Scaffolding for Stress-Testing and Improving LLMs [87.34281749422756]
Large language models (LLMs) have achieved impressive human-like performance across various reasoning tasks.
However, their mastery of underlying inferential rules still falls short of human capabilities.
We propose a logic scaffolding inferential rule generation framework, to construct an inferential rule base, ULogic.
arXiv Detail & Related papers (2024-02-18T03:38:51Z) - Language Models can be Logical Solvers [99.40649402395725]
We introduce LoGiPT, a novel language model that directly emulates the reasoning processes of logical solvers.
LoGiPT is fine-tuned on a newly constructed instruction-tuning dataset derived from revealing and refining the invisible reasoning process of deductive solvers.
arXiv Detail & Related papers (2023-11-10T16:23:50Z) - Towards LogiGLUE: A Brief Survey and A Benchmark for Analyzing Logical Reasoning Capabilities of Language Models [56.34029644009297]
Large language models (LLMs) have demonstrated the ability to overcome various limitations of formal Knowledge Representation (KR) systems.
LLMs excel most in abductive reasoning, followed by deductive reasoning, while they are least effective at inductive reasoning.
We study single-task training, multi-task training, and "chain-of-thought" knowledge distillation fine-tuning technique to assess the performance of model.
arXiv Detail & Related papers (2023-10-02T01:00:50Z) - Learning Deductive Reasoning from Synthetic Corpus based on Formal Logic [14.503982715625902]
We study a synthetic corpus based approach for language models (LMs) to acquire logical deductive reasoning ability.
We adopt a well-grounded set of deduction rules based on formal logic theory, which can derive any other deduction rules when combined in a multistep way.
We empirically verify that LMs trained on FLD corpora acquire more generalizable reasoning ability.
arXiv Detail & Related papers (2023-08-11T13:15:35Z) - Large Language Models are In-Context Semantic Reasoners rather than
Symbolic Reasoners [75.85554779782048]
Large Language Models (LLMs) have excited the natural language and machine learning community over recent years.
Despite of numerous successful applications, the underlying mechanism of such in-context capabilities still remains unclear.
In this work, we hypothesize that the learned textitsemantics of language tokens do the most heavy lifting during the reasoning process.
arXiv Detail & Related papers (2023-05-24T07:33:34Z) - Discourse-Aware Graph Networks for Textual Logical Reasoning [142.0097357999134]
Passage-level logical relations represent entailment or contradiction between propositional units (e.g., a concluding sentence)
We propose logic structural-constraint modeling to solve the logical reasoning QA and introduce discourse-aware graph networks (DAGNs)
The networks first construct logic graphs leveraging in-line discourse connectives and generic logic theories, then learn logic representations by end-to-end evolving the logic relations with an edge-reasoning mechanism and updating the graph features.
arXiv Detail & Related papers (2022-07-04T14:38:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.