Saliency Map Based Data Augmentation
- URL: http://arxiv.org/abs/2205.14686v1
- Date: Sun, 29 May 2022 15:04:59 GMT
- Title: Saliency Map Based Data Augmentation
- Authors: Jalal Al-afandi, B\'alint Magyar, Andr\'as Horv\'ath
- Abstract summary: We will present a new method which uses saliency maps to restrict the invariance of neural networks to certain regions.
This method provides higher test accuracy in classification tasks.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Data augmentation is a commonly applied technique with two seemingly related
advantages. With this method one can increase the size of the training set
generating new samples and also increase the invariance of the network against
the applied transformations. Unfortunately all images contain both relevant and
irrelevant features for classification therefore this invariance has to be
class specific. In this paper we will present a new method which uses saliency
maps to restrict the invariance of neural networks to certain regions,
providing higher test accuracy in classification tasks.
Related papers
- Fine-grained Recognition with Learnable Semantic Data Augmentation [68.48892326854494]
Fine-grained image recognition is a longstanding computer vision challenge.
We propose diversifying the training data at the feature-level to alleviate the discriminative region loss problem.
Our method significantly improves the generalization performance on several popular classification networks.
arXiv Detail & Related papers (2023-09-01T11:15:50Z) - Large-Margin Representation Learning for Texture Classification [67.94823375350433]
This paper presents a novel approach combining convolutional layers (CLs) and large-margin metric learning for training supervised models on small datasets for texture classification.
The experimental results on texture and histopathologic image datasets have shown that the proposed approach achieves competitive accuracy with lower computational cost and faster convergence when compared to equivalent CNNs.
arXiv Detail & Related papers (2022-06-17T04:07:45Z) - Do Deep Networks Transfer Invariances Across Classes? [123.84237389985236]
We show how a generative approach for learning the nuisance transformations can help transfer invariances across classes.
Our results provide one explanation for why classifiers generalize poorly on unbalanced and longtailed distributions.
arXiv Detail & Related papers (2022-03-18T04:38:18Z) - Imagine by Reasoning: A Reasoning-Based Implicit Semantic Data
Augmentation for Long-Tailed Classification [17.08583412899347]
Real-world data often follows a long-tailed distribution, which makes the performance of existing classification algorithms degrade heavily.
We propose a novel reasoning-based implicit semantic data augmentation method to borrow transformation directions from other classes.
Experimental results on CIFAR-100-LT, ImageNet-LT, and iNaturalist 2018 have demonstrated the effectiveness of our proposed method.
arXiv Detail & Related papers (2021-12-15T07:14:39Z) - Exploiting Invariance in Training Deep Neural Networks [4.169130102668252]
Inspired by two basic mechanisms in animal visual systems, we introduce a feature transform technique that imposes invariance properties in the training of deep neural networks.
The resulting algorithm requires less parameter tuning, trains well with an initial learning rate 1.0, and easily generalizes to different tasks.
Tested on ImageNet, MS COCO, and Cityscapes datasets, our proposed technique requires fewer iterations to train, surpasses all baselines by a large margin, seamlessly works on both small and large batch size training, and applies to different computer vision tasks of image classification, object detection, and semantic segmentation.
arXiv Detail & Related papers (2021-03-30T19:18:31Z) - Variational Feature Disentangling for Fine-Grained Few-Shot
Classification [30.350307891161865]
Fine-grained few-shot recognition often suffers from the problem of training data scarcity for novel categories.
In this paper, we focus one enlarging the intra-class variance of the unseen class to improve few-shot classification performance.
arXiv Detail & Related papers (2020-10-07T08:13:42Z) - ReMarNet: Conjoint Relation and Margin Learning for Small-Sample Image
Classification [49.87503122462432]
We introduce a novel neural network termed Relation-and-Margin learning Network (ReMarNet)
Our method assembles two networks of different backbones so as to learn the features that can perform excellently in both of the aforementioned two classification mechanisms.
Experiments on four image datasets demonstrate that our approach is effective in learning discriminative features from a small set of labeled samples.
arXiv Detail & Related papers (2020-06-27T13:50:20Z) - Generalized Zero and Few-Shot Transfer for Facial Forgery Detection [3.8073142980733]
We propose a new transfer learning approach to address the problem of zero and few-shot transfer in the context of forgery detection.
We find this learning strategy to be surprisingly effective at domain transfer compared to a traditional classification or even state-of-the-art domain adaptation/few-shot learning methods.
arXiv Detail & Related papers (2020-06-21T18:10:52Z) - Regularizing Class-wise Predictions via Self-knowledge Distillation [80.76254453115766]
We propose a new regularization method that penalizes the predictive distribution between similar samples.
This results in regularizing the dark knowledge (i.e., the knowledge on wrong predictions) of a single network.
Our experimental results on various image classification tasks demonstrate that the simple yet powerful method can significantly improve the generalization ability.
arXiv Detail & Related papers (2020-03-31T06:03:51Z) - Embedding Propagation: Smoother Manifold for Few-Shot Classification [131.81692677836202]
We propose to use embedding propagation as an unsupervised non-parametric regularizer for manifold smoothing in few-shot classification.
We empirically show that embedding propagation yields a smoother embedding manifold.
We show that embedding propagation consistently improves the accuracy of the models in multiple semi-supervised learning scenarios by up to 16% points.
arXiv Detail & Related papers (2020-03-09T13:51:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.