ReMarNet: Conjoint Relation and Margin Learning for Small-Sample Image
Classification
- URL: http://arxiv.org/abs/2006.15366v1
- Date: Sat, 27 Jun 2020 13:50:20 GMT
- Title: ReMarNet: Conjoint Relation and Margin Learning for Small-Sample Image
Classification
- Authors: Xiaoxu Li, Liyun Yu, Xiaochen Yang, Zhanyu Ma, Jing-Hao Xue, Jie Cao,
Jun Guo
- Abstract summary: We introduce a novel neural network termed Relation-and-Margin learning Network (ReMarNet)
Our method assembles two networks of different backbones so as to learn the features that can perform excellently in both of the aforementioned two classification mechanisms.
Experiments on four image datasets demonstrate that our approach is effective in learning discriminative features from a small set of labeled samples.
- Score: 49.87503122462432
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite achieving state-of-the-art performance, deep learning methods
generally require a large amount of labeled data during training and may suffer
from overfitting when the sample size is small. To ensure good generalizability
of deep networks under small sample sizes, learning discriminative features is
crucial. To this end, several loss functions have been proposed to encourage
large intra-class compactness and inter-class separability. In this paper, we
propose to enhance the discriminative power of features from a new perspective
by introducing a novel neural network termed Relation-and-Margin learning
Network (ReMarNet). Our method assembles two networks of different backbones so
as to learn the features that can perform excellently in both of the
aforementioned two classification mechanisms. Specifically, a relation network
is used to learn the features that can support classification based on the
similarity between a sample and a class prototype; at the meantime, a fully
connected network with the cross entropy loss is used for classification via
the decision boundary. Experiments on four image datasets demonstrate that our
approach is effective in learning discriminative features from a small set of
labeled samples and achieves competitive performance against state-of-the-art
methods. Codes are available at https://github.com/liyunyu08/ReMarNet.
Related papers
- Compare learning: bi-attention network for few-shot learning [6.559037166322981]
One of the Few-shot learning methods called metric learning addresses this challenge by first learning a deep distance metric to determine whether a pair of images belong to the same category.
In this paper, we propose a novel approach named Bi-attention network to compare the instances, which can measure the similarity between embeddings of instances precisely, globally and efficiently.
arXiv Detail & Related papers (2022-03-25T07:39:10Z) - Multi-scale and Cross-scale Contrastive Learning for Semantic
Segmentation [5.281694565226513]
We apply contrastive learning to enhance the discriminative power of the multi-scale features extracted by semantic segmentation networks.
By first mapping the encoder's multi-scale representations to a common feature space, we instantiate a novel form of supervised local-global constraint.
arXiv Detail & Related papers (2022-03-25T01:24:24Z) - Semi-Supervised Few-Shot Classification with Deep Invertible Hybrid
Models [4.189643331553922]
We propose a deep invertible hybrid model which integrates discriminative and generative learning at a latent space level for semi-supervised few-shot classification.
Our main originality lies in our integration of these components at a latent space level, which is effective in preventing overfitting.
arXiv Detail & Related papers (2021-05-22T05:55:16Z) - Distribution Alignment: A Unified Framework for Long-tail Visual
Recognition [52.36728157779307]
We propose a unified distribution alignment strategy for long-tail visual recognition.
We then introduce a generalized re-weight method in the two-stage learning to balance the class prior.
Our approach achieves the state-of-the-art results across all four recognition tasks with a simple and unified framework.
arXiv Detail & Related papers (2021-03-30T14:09:53Z) - BCFNet: A Balanced Collaborative Filtering Network with Attention
Mechanism [106.43103176833371]
Collaborative Filtering (CF) based recommendation methods have been widely studied.
We propose a novel recommendation model named Balanced Collaborative Filtering Network (BCFNet)
In addition, an attention mechanism is designed to better capture the hidden information within implicit feedback and strengthen the learning ability of the neural network.
arXiv Detail & Related papers (2021-03-10T14:59:23Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
We present a novel contrastive self-supervised learning framework for anomaly detection on attributed networks.
Our framework fully exploits the local information from network data by sampling a novel type of contrastive instance pair.
A graph neural network-based contrastive learning model is proposed to learn informative embedding from high-dimensional attributes and local structure.
arXiv Detail & Related papers (2021-02-27T03:17:20Z) - Adaptive Prototypical Networks with Label Words and Joint Representation
Learning for Few-Shot Relation Classification [17.237331828747006]
This work focuses on few-shot relation classification (FSRC)
We propose an adaptive mixture mechanism to add label words to the representation of the class prototype.
Experiments have been conducted on FewRel under different few-shot (FS) settings.
arXiv Detail & Related papers (2021-01-10T11:25:42Z) - Region Comparison Network for Interpretable Few-shot Image
Classification [97.97902360117368]
Few-shot image classification has been proposed to effectively use only a limited number of labeled examples to train models for new classes.
We propose a metric learning based method named Region Comparison Network (RCN), which is able to reveal how few-shot learning works.
We also present a new way to generalize the interpretability from the level of tasks to categories.
arXiv Detail & Related papers (2020-09-08T07:29:05Z) - HALO: Learning to Prune Neural Networks with Shrinkage [5.283963846188862]
Deep neural networks achieve state-of-the-art performance in a variety of tasks by extracting a rich set of features from unstructured data.
Modern techniques for inducing sparsity and reducing model size are (1) network pruning, (2) training with a sparsity inducing penalty, and (3) training a binary mask jointly with the weights of the network.
We present a novel penalty called Hierarchical Adaptive Lasso which learns to adaptively sparsify weights of a given network via trainable parameters.
arXiv Detail & Related papers (2020-08-24T04:08:48Z) - OSLNet: Deep Small-Sample Classification with an Orthogonal Softmax
Layer [77.90012156266324]
This paper aims to find a subspace of neural networks that can facilitate a large decision margin.
We propose the Orthogonal Softmax Layer (OSL), which makes the weight vectors in the classification layer remain during both the training and test processes.
Experimental results demonstrate that the proposed OSL has better performance than the methods used for comparison on four small-sample benchmark datasets.
arXiv Detail & Related papers (2020-04-20T02:41:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.