論文の概要: On the Robustness of Safe Reinforcement Learning under Observational
Perturbations
- arxiv url: http://arxiv.org/abs/2205.14691v1
- Date: Sun, 29 May 2022 15:25:03 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-31 15:31:23.874686
- Title: On the Robustness of Safe Reinforcement Learning under Observational
Perturbations
- Title(参考訳): 観測摂動下における安全強化学習のロバスト性について
- Authors: Zuxin Liu, Zijian Guo, Zhepeng Cen, Huan Zhang, Jie Tan, Bo Li, Ding
Zhao
- Abstract要約: 標準RLタスクのベースライン対向攻撃技術は安全RLには必ずしも有効ではないことを示す。
興味深い反直感的な発見の1つは、最大報酬攻撃は、安全でない振る舞いを誘発し、報酬を維持することで攻撃をステルスティにすることができるため、強いものであることである。
この研究は、RLにおける観測ロバスト性と安全性の間の継承された接続に光を当て、将来の安全なRL研究のための先駆的な研究を提供する。
- 参考スコア(独自算出の注目度): 27.88525130218356
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Safe reinforcement learning (RL) trains a policy to maximize the task reward
while satisfying safety constraints. While prior works focus on the performance
optimality, we find that the optimal solutions of many safe RL problems are not
robust and safe against carefully designed observational perturbations. We
formally analyze the unique properties of designing effective state adversarial
attackers in the safe RL setting. We show that baseline adversarial attack
techniques for standard RL tasks are not always effective for safe RL and
proposed two new approaches - one maximizes the cost and the other maximizes
the reward. One interesting and counter-intuitive finding is that the maximum
reward attack is strong, as it can both induce unsafe behaviors and make the
attack stealthy by maintaining the reward. We further propose a more effective
adversarial training framework for safe RL and evaluate it via comprehensive
experiments. This work sheds light on the inherited connection between
observational robustness and safety in RL and provides a pioneer work for
future safe RL studies.
- Abstract(参考訳): 安全強化学習(RL)は、安全制約を満たしつつタスク報酬を最大化する政策を訓練する。
先行研究は性能最適性に重点を置いているが、多くの安全なRL問題の最適解は、慎重に設計された観測摂動に対して堅牢で安全ではない。
我々は、安全なRL設定で有効な状態敵攻撃を設計するユニークな特性を正式に分析する。
本稿では,標準RLタスクのベースライン逆攻撃手法が安全RLに必ずしも有効ではないことを示すとともに,コストを最大化し,報酬を最大化する2つの新しいアプローチを提案する。
興味深く直観的な発見の1つは、最大報酬攻撃は安全でない行為を誘発し、報酬を維持して密かに攻撃を行うことができるため、強いことである。
さらに,より効果的なRL学習フレームワークを提案し,総合的な実験を通じて評価する。
この研究は、RLにおける観測ロバスト性と安全性の間の継承された接続に光を当て、将来の安全なRL研究のための先駆的な研究を提供する。
関連論文リスト
- ActSafe: Active Exploration with Safety Constraints for Reinforcement Learning [48.536695794883826]
本稿では,安全かつ効率的な探索のためのモデルベースRLアルゴリズムであるActSafeを提案する。
本稿では,ActSafeが学習中の安全性を保証しつつ,有限時間で準最適政策を得ることを示す。
さらに,最新のモデルベースRLの進歩に基づくActSafeの実用版を提案する。
論文 参考訳(メタデータ) (2024-10-12T10:46:02Z) - Safe Reinforcement Learning in Black-Box Environments via Adaptive Shielding [5.5929450570003185]
未知のブラックボックス環境におけるRLエージェントのトレーニングは、ドメイン/タスクに関する事前の知識が利用できない場合にさらに安全性の高いリスクをもたらす。
本稿では、トレーニング中の状態-動作ペアの安全性と安全性を区別する新しいポストシールド技術であるADVICE(Adaptive Shielding with a Contrastive Autoencoder)を紹介する。
論文 参考訳(メタデータ) (2024-05-28T13:47:21Z) - Balance Reward and Safety Optimization for Safe Reinforcement Learning: A Perspective of Gradient Manipulation [26.244121960815907]
探索中の報酬と安全の間のトレードオフを管理することは、大きな課題である。
本研究では,勾配操作の理論を活用することによって,この矛盾する関係に対処することを目的とする。
実験の結果,提案アルゴリズムは報酬のバランスと安全性の最適化の観点から,最先端のベースラインよりも優れていた。
論文 参考訳(メタデータ) (2024-05-02T19:07:14Z) - Safe Reinforcement Learning with Dual Robustness [10.455148541147796]
強化学習(RL)エージェントは敵の障害に対して脆弱である。
安全なRLとロバストなRLを統合するための体系的フレームワークを提案する。
また,デュアル・ロバスト・アクター・クリティック(DRAC)と呼ばれる実装のためのディープRLアルゴリズムを設計する。
論文 参考訳(メタデータ) (2023-09-13T09:34:21Z) - Approximate Model-Based Shielding for Safe Reinforcement Learning [83.55437924143615]
本稿では,学習したRLポリシーの性能を検証するための,原則的ルックアヘッド遮蔽アルゴリズムを提案する。
我々のアルゴリズムは他の遮蔽手法と異なり、システムの安全性関連力学の事前知識を必要としない。
我々は,国家依存型安全ラベルを持つアタリゲームにおいて,他の安全を意識したアプローチよりも優れた性能を示す。
論文 参考訳(メタデータ) (2023-07-27T15:19:45Z) - Safe and Sample-efficient Reinforcement Learning for Clustered Dynamic
Environments [4.111899441919165]
本研究は,2つの課題に対処する安全かつサンプル効率の強化学習(RL)フレームワークを提案する。
我々は、セーフセットアルゴリズム(SSA)を用いて、名目制御の監視と修正を行い、クラスタリングされた動的環境におけるSSA+RLの評価を行う。
我々のフレームワークは、トレーニング中の他の安全なRL手法と比較して安全性が向上し、エピソードが大幅に少ないタスクを解決できる。
論文 参考訳(メタデータ) (2023-03-24T20:29:17Z) - A Multiplicative Value Function for Safe and Efficient Reinforcement
Learning [131.96501469927733]
本稿では,安全評論家と報酬評論家からなる新しい乗法値関数を持つモデルフリーRLアルゴリズムを提案する。
安全評論家は、制約違反の確率を予測し、制限のないリターンのみを見積もる報酬批評家を割引する。
安全制約を付加した古典的RLベンチマークや、画像を用いたロボットナビゲーションタスク、生のライダースキャンを観察する4つの環境において、本手法の評価を行った。
論文 参考訳(メタデータ) (2023-03-07T18:29:15Z) - Provable Safe Reinforcement Learning with Binary Feedback [62.257383728544006]
状態, アクションペアの安全性に対するバイナリフィードバックを提供するオフラインオラクルへのアクセスを与えられた場合, 証明可能な安全なRLの問題を考える。
我々は,その設定に対してブラックボックスPAC RLアルゴリズムに与えられた任意のMDP設定に適用可能な,新しいメタアルゴリズムSABREを提案する。
論文 参考訳(メタデータ) (2022-10-26T05:37:51Z) - Provably Safe Reinforcement Learning: Conceptual Analysis, Survey, and
Benchmarking [12.719948223824483]
強化学習(RL)アルゴリズムは、多くの現実世界のタスクにおいて、その潜在能力を解き放つために不可欠である。
しかしながら、バニラRLと最も安全なRLアプローチは安全性を保証するものではない。
本稿では,既存の安全なRL手法の分類を導入し,連続的および離散的な動作空間の概念的基礎を提示し,既存の手法を実証的にベンチマークする。
本稿では、安全仕様、RLアルゴリズム、アクション空間の種類に応じて、確実に安全なRLアプローチを選択するための実用的なガイダンスを提供する。
論文 参考訳(メタデータ) (2022-05-13T16:34:36Z) - Robust Reinforcement Learning on State Observations with Learned Optimal
Adversary [86.0846119254031]
逆摂動状態観測による強化学習の堅牢性について検討した。
固定されたエージェントポリシーでは、摂動状態の観測に最適な敵を見つけることができる。
DRLの設定では、これは以前のものよりもはるかに強い学習された敵対を介してRLエージェントに新しい経験的敵対攻撃につながります。
論文 参考訳(メタデータ) (2021-01-21T05:38:52Z) - Conservative Safety Critics for Exploration [120.73241848565449]
強化学習(RL)における安全な探索の課題について検討する。
我々は、批評家を通じて環境状態の保守的な安全性推定を学習する。
提案手法は,破滅的故障率を著しく低く抑えながら,競争力のあるタスク性能を実現することができることを示す。
論文 参考訳(メタデータ) (2020-10-27T17:54:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。