What are People Talking about in #BlackLivesMatter and #StopAsianHate?
Exploring and Categorizing Twitter Topics Emerging in Online Social Movements
through the Latent Dirichlet Allocation Model
- URL: http://arxiv.org/abs/2205.14725v2
- Date: Mon, 19 Sep 2022 04:08:44 GMT
- Title: What are People Talking about in #BlackLivesMatter and #StopAsianHate?
Exploring and Categorizing Twitter Topics Emerging in Online Social Movements
through the Latent Dirichlet Allocation Model
- Authors: Xin Tong, Yixuan Li, Jiayi Li, Rongqi Bei, Luyao Zhang
- Abstract summary: Black Lives Matter (BLM) and Stop Asian Hate (SAH) are two successful social movements that have spread on Twitter.
This study adopts a mixed-methods approach to comprehensively analyze BLM and SAH Twitter topics.
We collected more than one million tweets with the #blacklivesmatter and #stopasianhate hashtags and compared their topics.
- Score: 27.53788299995914
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Minority groups have been using social media to organize social movements
that create profound social impacts. Black Lives Matter (BLM) and Stop Asian
Hate (SAH) are two successful social movements that have spread on Twitter that
promote protests and activities against racism and increase the public's
awareness of other social challenges that minority groups face. However,
previous studies have mostly conducted qualitative analyses of tweets or
interviews with users, which may not comprehensively and validly represent all
tweets. Very few studies have explored the Twitter topics within BLM and SAH
dialogs in a rigorous, quantified and data-centered approach. Therefore, in
this research, we adopted a mixed-methods approach to comprehensively analyze
BLM and SAH Twitter topics. We implemented (1) the latent Dirichlet allocation
model to understand the top high-level words and topics and (2) open-coding
analysis to identify specific themes across the tweets. We collected more than
one million tweets with the #blacklivesmatter and #stopasianhate hashtags and
compared their topics. Our findings revealed that the tweets discussed a
variety of influential topics in depth, and social justice, social movements,
and emotional sentiments were common topics in both movements, though with
unique subtopics for each movement. Our study contributes to the topic analysis
of social movements on social media platforms in particular and the literature
on the interplay of AI, ethics, and society in general.
Related papers
- Exploring Gender-Based Toxic Speech on Twitter in Context of the #MeToo
movement: A Mixed Methods Approach [2.454909090258064]
The # movement has catalyzed widespread public discourse surrounding sexual harassment and assault, empowering survivors to share their stories and holding perpetrators accountable.
While the movement has had a substantial and largely positive influence, this study aims to examine the potential negative consequences in the form of increased hostility against women and men on the social media platform Twitter.
By analyzing tweets shared between October 2017 and January 2020 by more than 47.1k individuals who had either disclosed their own sexual abuse experiences on Twitter or engaged in discussions about the movement, we identify the overall increase in gender-based hostility towards both women and men since the start of the movement.
arXiv Detail & Related papers (2023-08-24T20:45:12Z) - A deep dive into the consistently toxic 1% of Twitter [9.669275987983447]
This study spans 14 years of tweets from 122K Twitter profiles and more than 293M tweets.
We selected the most extreme profiles in terms of consistency of toxic content and examined their tweet texts, and the domains, hashtags, and URLs they shared.
We found that these selected profiles keep to a narrow theme with lower diversity in hashtags, URLs, and domains, they are thematically similar to each other, and have a high likelihood of bot-like behavior.
arXiv Detail & Related papers (2022-02-16T04:21:48Z) - What goes on inside rumour and non-rumour tweets and their reactions: A
Psycholinguistic Analyses [58.75684238003408]
psycho-linguistics analyses of social media text are vital for drawing meaningful conclusions to mitigate misinformation.
This research contributes by performing an in-depth psycholinguistic analysis of rumours related to various kinds of events.
arXiv Detail & Related papers (2021-11-09T07:45:11Z) - What Truly Matters? Using Linguistic Cues for Analyzing the
#BlackLivesMatter Movement and its Counter Protests: 2013 to 2020 [31.670509436139735]
There has been a significant increase in digital activism addressing police-brutality related and racially-motivated incidents in the U.S.
We use social media as an authoritative tool to examine and analyze the linguistic cues and thematic relationships in these three mediums.
Our results show that excessive use of racially-related or prejudicial hashtags were used by the counter protests which portray potential discriminatory tendencies.
arXiv Detail & Related papers (2021-09-20T18:34:30Z) - TweetBLM: A Hate Speech Dataset and Analysis of Black Lives
Matter-related Microblogs on Twitter [2.741266294612776]
We have proposed a Black Lives Matter related tweet hate speech dataset TweetBLM.
Our dataset comprises 9165 manually annotated tweets that target the Black Lives Matter movement.
arXiv Detail & Related papers (2021-08-27T22:47:02Z) - News consumption and social media regulations policy [70.31753171707005]
We analyze two social media that enforced opposite moderation methods, Twitter and Gab, to assess the interplay between news consumption and content regulation.
Our results show that the presence of moderation pursued by Twitter produces a significant reduction of questionable content.
The lack of clear regulation on Gab results in the tendency of the user to engage with both types of content, showing a slight preference for the questionable ones which may account for a dissing/endorsement behavior.
arXiv Detail & Related papers (2021-06-07T19:26:32Z) - Demographic Representation and Collective Storytelling in the Me Too
Twitter Hashtag Activism Movement [17.672730162091526]
The # movement on Twitter has drawn attention to the pervasive nature of sexual harassment and violence.
We examine online # conversations across gender and racial/ethnic identities.
We find that tweets authored by white women were overrepresented in the movement compared to other demographics.
arXiv Detail & Related papers (2020-10-13T15:25:33Z) - Racism is a Virus: Anti-Asian Hate and Counterspeech in Social Media
during the COVID-19 Crisis [51.39895377836919]
COVID-19 has sparked racism and hate on social media targeted towards Asian communities.
We study the evolution and spread of anti-Asian hate speech through the lens of Twitter.
We create COVID-HATE, the largest dataset of anti-Asian hate and counterspeech spanning 14 months.
arXiv Detail & Related papers (2020-05-25T21:58:09Z) - Echo Chambers on Social Media: A comparative analysis [64.2256216637683]
We introduce an operational definition of echo chambers and perform a massive comparative analysis on 1B pieces of contents produced by 1M users on four social media platforms.
We infer the leaning of users about controversial topics and reconstruct their interaction networks by analyzing different features.
We find support for the hypothesis that platforms implementing news feed algorithms like Facebook may elicit the emergence of echo-chambers.
arXiv Detail & Related papers (2020-04-20T20:00:27Z) - #MeToo on Campus: Studying College Sexual Assault at Scale Using Data
Reported on Social Media [71.74529365205053]
We analyze the influence of the # trend on a pool of college followers.
The results show that the majority of topics embedded in those # tweets detail sexual harassment stories.
There exists a significant correlation between the prevalence of this trend and official reports on several major geographical regions.
arXiv Detail & Related papers (2020-01-16T18:05:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.