Neural Copula: A unified framework for estimating generic
high-dimensional Copula functions
- URL: http://arxiv.org/abs/2205.15031v1
- Date: Mon, 23 May 2022 13:01:44 GMT
- Title: Neural Copula: A unified framework for estimating generic
high-dimensional Copula functions
- Authors: Zhi Zeng and Ting Wang
- Abstract summary: The Copula is widely used to describe the relationship between the marginal distribution and joint distribution of random variables.
A novel neural network-based method (named Neural Copula) is proposed in this paper.
The effectiveness of the proposed method is evaluated on both real-world datasets and complex numerical simulations.
- Score: 7.926596248777508
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Copula is widely used to describe the relationship between the marginal
distribution and joint distribution of random variables. The estimation of
high-dimensional Copula is difficult, and most existing solutions rely either
on simplified assumptions or on complicating recursive decompositions.
Therefore, people still hope to obtain a generic Copula estimation method with
both universality and simplicity. To reach this goal, a novel neural
network-based method (named Neural Copula) is proposed in this paper. In this
method, a hierarchical unsupervised neural network is constructed to estimate
the marginal distribution function and the Copula function by solving
differential equations. In the training program, various constraints are
imposed on both the neural network and its derivatives. The Copula estimated by
the proposed method is smooth and has an analytic expression. The effectiveness
of the proposed method is evaluated on both real-world datasets and complex
numerical simulations. Experimental results show that Neural Copula's fitting
quality for complex distributions is much better than classical methods. The
relevant code for the experiments is available on GitHub. (We encourage the
reader to run the program for a better understanding of the proposed method).
Related papers
- A new approach to generalisation error of machine learning algorithms:
Estimates and convergence [0.0]
We introduce a new approach to the estimation of the (generalisation) error and to convergence.
Our results include estimates of the error without any structural assumption on the neural networks.
arXiv Detail & Related papers (2023-06-23T20:57:31Z) - Promises and Pitfalls of the Linearized Laplace in Bayesian Optimization [73.80101701431103]
The linearized-Laplace approximation (LLA) has been shown to be effective and efficient in constructing Bayesian neural networks.
We study the usefulness of the LLA in Bayesian optimization and highlight its strong performance and flexibility.
arXiv Detail & Related papers (2023-04-17T14:23:43Z) - Semantic Strengthening of Neuro-Symbolic Learning [85.6195120593625]
Neuro-symbolic approaches typically resort to fuzzy approximations of a probabilistic objective.
We show how to compute this efficiently for tractable circuits.
We test our approach on three tasks: predicting a minimum-cost path in Warcraft, predicting a minimum-cost perfect matching, and solving Sudoku puzzles.
arXiv Detail & Related papers (2023-02-28T00:04:22Z) - The Separation Capacity of Random Neural Networks [78.25060223808936]
We show that a sufficiently large two-layer ReLU-network with standard Gaussian weights and uniformly distributed biases can solve this problem with high probability.
We quantify the relevant structure of the data in terms of a novel notion of mutual complexity.
arXiv Detail & Related papers (2021-07-31T10:25:26Z) - Deep Archimedean Copulas [98.96141706464425]
ACNet is a novel differentiable neural network architecture that enforces structural properties.
We show that ACNet is able to both approximate common Archimedean Copulas and generate new copulas which may provide better fits to data.
arXiv Detail & Related papers (2020-12-05T22:58:37Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
We study estimation in a class of generalized Structural equation models (SEMs)
We formulate the linear operator equation as a min-max game, where both players are parameterized by neural networks (NNs), and learn the parameters of these neural networks using a gradient descent.
For the first time we provide a tractable estimation procedure for SEMs based on NNs with provable convergence and without the need for sample splitting.
arXiv Detail & Related papers (2020-07-02T17:55:47Z) - Relative gradient optimization of the Jacobian term in unsupervised deep
learning [9.385902422987677]
Learning expressive probabilistic models correctly describing the data is a ubiquitous problem in machine learning.
Deep density models have been widely used for this task, but their maximum likelihood based training requires estimating the log-determinant of the Jacobian.
We propose a new approach for exact training of such neural networks.
arXiv Detail & Related papers (2020-06-26T16:41:08Z) - Deep Learning with Functional Inputs [0.0]
We present a methodology for integrating functional data into feed-forward neural networks.
A by-product of the method is a set of dynamic functional weights that can be visualized during the optimization process.
The model is shown to perform well in a number of contexts including prediction of new data and recovery of the true underlying functional weights.
arXiv Detail & Related papers (2020-06-17T01:23:00Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
One of the main challenges in using deep learning-based methods for simulating physical systems is formulating physics-based data.
We propose a novel multi-level graph neural network framework that captures interaction at all ranges with only linear complexity.
Experiments confirm our multi-graph network learns discretization-invariant solution operators to PDEs and can be evaluated in linear time.
arXiv Detail & Related papers (2020-06-16T21:56:22Z) - Mean-Field Approximation to Gaussian-Softmax Integral with Application
to Uncertainty Estimation [23.38076756988258]
We propose a new single-model based approach to quantify uncertainty in deep neural networks.
We use a mean-field approximation formula to compute an analytically intractable integral.
Empirically, the proposed approach performs competitively when compared to state-of-the-art methods.
arXiv Detail & Related papers (2020-06-13T07:32:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.