SEREN: Knowing When to Explore and When to Exploit
- URL: http://arxiv.org/abs/2205.15064v1
- Date: Mon, 30 May 2022 12:44:56 GMT
- Title: SEREN: Knowing When to Explore and When to Exploit
- Authors: Changmin Yu, David Mguni, Dong Li, Aivar Sootla, Jun Wang, Neil
Burgess
- Abstract summary: We introduce Sive Reinforcement Exploration Network (SEREN) that poses the exploration-exploitation trade-off as a game.
Using a form of policies known as impulse control, switcher is able to determine the best set of states to switch to the exploration policy.
We prove that SEREN converges quickly and induces a natural schedule towards pure exploitation.
- Score: 14.188362393915432
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Efficient reinforcement learning (RL) involves a trade-off between
"exploitative" actions that maximise expected reward and "explorative'" ones
that sample unvisited states. To encourage exploration, recent approaches
proposed adding stochasticity to actions, separating exploration and
exploitation phases, or equating reduction in uncertainty with reward. However,
these techniques do not necessarily offer entirely systematic approaches making
this trade-off. Here we introduce SElective Reinforcement Exploration Network
(SEREN) that poses the exploration-exploitation trade-off as a game between an
RL agent -- \exploiter, which purely exploits known rewards, and another RL
agent -- \switcher, which chooses at which states to activate a pure
exploration policy that is trained to minimise system uncertainty and override
Exploiter. Using a form of policies known as impulse control, \switcher is able
to determine the best set of states to switch to the exploration policy while
Exploiter is free to execute its actions everywhere else. We prove that SEREN
converges quickly and induces a natural schedule towards pure exploitation.
Through extensive empirical studies in both discrete (MiniGrid) and continuous
(MuJoCo) control benchmarks, we show that SEREN can be readily combined with
existing RL algorithms to yield significant improvement in performance relative
to state-of-the-art algorithms.
Related papers
- Efficient Reinforcement Learning via Decoupling Exploration and Utilization [6.305976803910899]
Reinforcement Learning (RL) has achieved remarkable success across multiple fields and applications, including gaming, robotics, and autonomous vehicles.
In this work, our aim is to train agent with efficient learning by decoupling exploration and utilization, so that agent can escaping the conundrum of suboptimal Solutions.
The above idea is implemented in the proposed OPARL (Optimistic and Pessimistic Actor Reinforcement Learning) algorithm.
arXiv Detail & Related papers (2023-12-26T09:03:23Z) - MURAL: Meta-Learning Uncertainty-Aware Rewards for Outcome-Driven
Reinforcement Learning [65.52675802289775]
We show that an uncertainty aware classifier can solve challenging reinforcement learning problems.
We propose a novel method for computing the normalized maximum likelihood (NML) distribution.
We show that the resulting algorithm has a number of intriguing connections to both count-based exploration methods and prior algorithms for learning reward functions.
arXiv Detail & Related papers (2021-07-15T08:19:57Z) - Explore and Control with Adversarial Surprise [78.41972292110967]
Reinforcement learning (RL) provides a framework for learning goal-directed policies given user-specified rewards.
We propose a new unsupervised RL technique based on an adversarial game which pits two policies against each other to compete over the amount of surprise an RL agent experiences.
We show that our method leads to the emergence of complex skills by exhibiting clear phase transitions.
arXiv Detail & Related papers (2021-07-12T17:58:40Z) - MADE: Exploration via Maximizing Deviation from Explored Regions [48.49228309729319]
In online reinforcement learning (RL), efficient exploration remains challenging in high-dimensional environments with sparse rewards.
We propose a new exploration approach via textitmaximizing the deviation of the occupancy of the next policy from the explored regions.
Our approach significantly improves sample efficiency over state-of-the-art methods.
arXiv Detail & Related papers (2021-06-18T17:57:00Z) - Exploration and Incentives in Reinforcement Learning [107.42240386544633]
We consider complex exploration problems, where each agent faces the same (but unknown) MDP.
Agents control the choice of policies, whereas an algorithm can only issue recommendations.
We design an algorithm which explores all reachable states in the MDP.
arXiv Detail & Related papers (2021-02-28T00:15:53Z) - Reannealing of Decaying Exploration Based On Heuristic Measure in Deep
Q-Network [82.20059754270302]
We propose an algorithm based on the idea of reannealing, that aims at encouraging exploration only when it is needed.
We perform an illustrative case study showing that it has potential to both accelerate training and obtain a better policy.
arXiv Detail & Related papers (2020-09-29T20:40:00Z) - Intrinsic Exploration as Multi-Objective RL [29.124322674133]
Intrinsic motivation enables reinforcement learning (RL) agents to explore when rewards are very sparse.
We propose a framework based on multi-objective RL where both exploration and exploitation are being optimized as separate objectives.
This formulation brings the balance between exploration and exploitation at a policy level, resulting in advantages over traditional methods.
arXiv Detail & Related papers (2020-04-06T02:37:29Z) - Never Give Up: Learning Directed Exploration Strategies [63.19616370038824]
We propose a reinforcement learning agent to solve hard exploration games by learning a range of directed exploratory policies.
We construct an episodic memory-based intrinsic reward using k-nearest neighbors over the agent's recent experience to train the directed exploratory policies.
A self-supervised inverse dynamics model is used to train the embeddings of the nearest neighbour lookup, biasing the novelty signal towards what the agent can control.
arXiv Detail & Related papers (2020-02-14T13:57:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.