MaxInfoRL: Boosting exploration in reinforcement learning through information gain maximization
- URL: http://arxiv.org/abs/2412.12098v1
- Date: Mon, 16 Dec 2024 18:59:53 GMT
- Title: MaxInfoRL: Boosting exploration in reinforcement learning through information gain maximization
- Authors: Bhavya Sukhija, Stelian Coros, Andreas Krause, Pieter Abbeel, Carmelo Sferrazza,
- Abstract summary: Reinforcement learning algorithms aim to balance exploiting the current best strategy with exploring new options that could lead to higher rewards.
We introduce a framework, MaxInfoRL, for balancing intrinsic and extrinsic exploration.
We show that our approach achieves sublinear regret in the simplified setting of multi-armed bandits.
- Score: 91.80034860399677
- License:
- Abstract: Reinforcement learning (RL) algorithms aim to balance exploiting the current best strategy with exploring new options that could lead to higher rewards. Most common RL algorithms use undirected exploration, i.e., select random sequences of actions. Exploration can also be directed using intrinsic rewards, such as curiosity or model epistemic uncertainty. However, effectively balancing task and intrinsic rewards is challenging and often task-dependent. In this work, we introduce a framework, MaxInfoRL, for balancing intrinsic and extrinsic exploration. MaxInfoRL steers exploration towards informative transitions, by maximizing intrinsic rewards such as the information gain about the underlying task. When combined with Boltzmann exploration, this approach naturally trades off maximization of the value function with that of the entropy over states, rewards, and actions. We show that our approach achieves sublinear regret in the simplified setting of multi-armed bandits. We then apply this general formulation to a variety of off-policy model-free RL methods for continuous state-action spaces, yielding novel algorithms that achieve superior performance across hard exploration problems and complex scenarios such as visual control tasks.
Related papers
- Random Latent Exploration for Deep Reinforcement Learning [71.88709402926415]
This paper introduces a new exploration technique called Random Latent Exploration (RLE)
RLE combines the strengths of bonus-based and noise-based (two popular approaches for effective exploration in deep RL) exploration strategies.
We evaluate it on the challenging Atari and IsaacGym benchmarks and show that RLE exhibits higher overall scores across all the tasks than other approaches.
arXiv Detail & Related papers (2024-07-18T17:55:22Z) - Exploration via Planning for Information about the Optimal Trajectory [67.33886176127578]
We develop a method that allows us to plan for exploration while taking the task and the current knowledge into account.
We demonstrate that our method learns strong policies with 2x fewer samples than strong exploration baselines.
arXiv Detail & Related papers (2022-10-06T20:28:55Z) - SEREN: Knowing When to Explore and When to Exploit [14.188362393915432]
We introduce Sive Reinforcement Exploration Network (SEREN) that poses the exploration-exploitation trade-off as a game.
Using a form of policies known as impulse control, switcher is able to determine the best set of states to switch to the exploration policy.
We prove that SEREN converges quickly and induces a natural schedule towards pure exploitation.
arXiv Detail & Related papers (2022-05-30T12:44:56Z) - Reward Uncertainty for Exploration in Preference-based Reinforcement
Learning [88.34958680436552]
We present an exploration method specifically for preference-based reinforcement learning algorithms.
Our main idea is to design an intrinsic reward by measuring the novelty based on learned reward.
Our experiments show that exploration bonus from uncertainty in learned reward improves both feedback- and sample-efficiency of preference-based RL algorithms.
arXiv Detail & Related papers (2022-05-24T23:22:10Z) - On Reward-Free RL with Kernel and Neural Function Approximations:
Single-Agent MDP and Markov Game [140.19656665344917]
We study the reward-free RL problem, where an agent aims to thoroughly explore the environment without any pre-specified reward function.
We tackle this problem under the context of function approximation, leveraging powerful function approximators.
We establish the first provably efficient reward-free RL algorithm with kernel and neural function approximators.
arXiv Detail & Related papers (2021-10-19T07:26:33Z) - MADE: Exploration via Maximizing Deviation from Explored Regions [48.49228309729319]
In online reinforcement learning (RL), efficient exploration remains challenging in high-dimensional environments with sparse rewards.
We propose a new exploration approach via textitmaximizing the deviation of the occupancy of the next policy from the explored regions.
Our approach significantly improves sample efficiency over state-of-the-art methods.
arXiv Detail & Related papers (2021-06-18T17:57:00Z) - Active Finite Reward Automaton Inference and Reinforcement Learning
Using Queries and Counterexamples [31.31937554018045]
Deep reinforcement learning (RL) methods require intensive data from the exploration of the environment to achieve satisfactory performance.
We propose a framework that enables an RL agent to reason over its exploration process and distill high-level knowledge for effectively guiding its future explorations.
Specifically, we propose a novel RL algorithm that learns high-level knowledge in the form of a finite reward automaton by using the L* learning algorithm.
arXiv Detail & Related papers (2020-06-28T21:13:08Z) - Exploration by Maximizing R\'enyi Entropy for Reward-Free RL Framework [28.430845498323745]
We consider a reward-free reinforcement learning framework that separates exploration from exploitation.
In the exploration phase, the agent learns an exploratory policy by interacting with a reward-free environment.
In the planning phase, the agent computes a good policy for any reward function based on the dataset.
arXiv Detail & Related papers (2020-06-11T05:05:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.