Gradient Backpropagation Through Combinatorial Algorithms: Identity with
Projection Works
- URL: http://arxiv.org/abs/2205.15213v1
- Date: Mon, 30 May 2022 16:17:09 GMT
- Title: Gradient Backpropagation Through Combinatorial Algorithms: Identity with
Projection Works
- Authors: Subham Sekhar Sahoo and Marin Vlastelica and Anselm Paulus and V\'it
Musil and Volodymyr Kuleshov and Georg Martius
- Abstract summary: A meaningful replacement for zero or undefined solvers is crucial for effective gradient-based learning.
We propose a principled approach to exploit the geometry of the discrete solution space to treat the solver as a negative identity on the backward pass.
- Score: 20.324159725851235
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Embedding discrete solvers as differentiable layers has given modern deep
learning architectures combinatorial expressivity and discrete reasoning
capabilities. The derivative of these solvers is zero or undefined, therefore a
meaningful replacement is crucial for effective gradient-based learning. Prior
works rely on smoothing the solver with input perturbations, relaxing the
solver to continuous problems, or interpolating the loss landscape with
techniques that typically require additional solver calls, introduce extra
hyper-parameters or compromise performance. We propose a principled approach to
exploit the geometry of the discrete solution space to treat the solver as a
negative identity on the backward pass and further provide a theoretical
justification. Our experiments demonstrate that such a straightforward
hyper-parameter-free approach is on-par with or outperforms previous more
complex methods on numerous experiments such as Traveling Salesman Problem,
Shortest Path, Deep Graph Matching, and backpropagating through discrete
samplers. Furthermore, we substitute the previously proposed problem-specific
and label-dependent margin by a generic regularization procedure that prevents
cost collapse and increases robustness.
Related papers
- Optimization by Parallel Quasi-Quantum Annealing with Gradient-Based Sampling [0.0]
This study proposes a different approach that integrates gradient-based update through continuous relaxation, combined with Quasi-Quantum Annealing (QQA)
Numerical experiments demonstrate that our method is a competitive general-purpose solver, achieving performance comparable to iSCO and learning-based solvers.
arXiv Detail & Related papers (2024-09-02T12:55:27Z) - Optimizing Solution-Samplers for Combinatorial Problems: The Landscape
of Policy-Gradient Methods [52.0617030129699]
We introduce a novel theoretical framework for analyzing the effectiveness of DeepMatching Networks and Reinforcement Learning methods.
Our main contribution holds for a broad class of problems including Max-and Min-Cut, Max-$k$-Bipartite-Bi, Maximum-Weight-Bipartite-Bi, and Traveling Salesman Problem.
As a byproduct of our analysis we introduce a novel regularization process over vanilla descent and provide theoretical and experimental evidence that it helps address vanishing-gradient issues and escape bad stationary points.
arXiv Detail & Related papers (2023-10-08T23:39:38Z) - Scalable Bayesian Meta-Learning through Generalized Implicit Gradients [64.21628447579772]
Implicit Bayesian meta-learning (iBaML) method broadens the scope of learnable priors, but also quantifies the associated uncertainty.
Analytical error bounds are established to demonstrate the precision and efficiency of the generalized implicit gradient over the explicit one.
arXiv Detail & Related papers (2023-03-31T02:10:30Z) - Analyzing Inexact Hypergradients for Bilevel Learning [0.09669369645900441]
We introduce a unified framework for computing hypergradients that generalizes existing methods based on the implicit function theorem and automatic differentiation/backpropagation.
Our numerical results show that, surprisingly, for efficient bilevel optimization, the choice of hypergradient algorithm is at least as important as the choice of lower-level solver.
arXiv Detail & Related papers (2023-01-11T23:54:27Z) - Learning to Optimize with Stochastic Dominance Constraints [103.26714928625582]
In this paper, we develop a simple yet efficient approach for the problem of comparing uncertain quantities.
We recast inner optimization in the Lagrangian as a learning problem for surrogate approximation, which bypasses apparent intractability.
The proposed light-SD demonstrates superior performance on several representative problems ranging from finance to supply chain management.
arXiv Detail & Related papers (2022-11-14T21:54:31Z) - Smooth over-parameterized solvers for non-smooth structured optimization [3.756550107432323]
Non-smoothness encodes structural constraints on the solutions, such as sparsity, group sparsity, low-rank edges and sharp edges.
We operate a non-weighted but smooth overparametrization of the underlying nonsmooth optimization problems.
Our main contribution is to apply the Variable Projection (VarPro) which defines a new formulation by explicitly minimizing over part of the variables.
arXiv Detail & Related papers (2022-05-03T09:23:07Z) - Conditional gradient methods for stochastically constrained convex
minimization [54.53786593679331]
We propose two novel conditional gradient-based methods for solving structured convex optimization problems.
The most important feature of our framework is that only a subset of the constraints is processed at each iteration.
Our algorithms rely on variance reduction and smoothing used in conjunction with conditional gradient steps, and are accompanied by rigorous convergence guarantees.
arXiv Detail & Related papers (2020-07-07T21:26:35Z) - Cogradient Descent for Bilinear Optimization [124.45816011848096]
We introduce a Cogradient Descent algorithm (CoGD) to address the bilinear problem.
We solve one variable by considering its coupling relationship with the other, leading to a synchronous gradient descent.
Our algorithm is applied to solve problems with one variable under the sparsity constraint.
arXiv Detail & Related papers (2020-06-16T13:41:54Z) - The Strength of Nesterov's Extrapolation in the Individual Convergence
of Nonsmooth Optimization [0.0]
We prove that Nesterov's extrapolation has the strength to make the individual convergence of gradient descent methods optimal for nonsmooth problems.
We give an extension of the derived algorithms to solve regularized learning tasks with nonsmooth losses in settings.
Our method is applicable as an efficient tool for solving large-scale $l$1-regularized hinge-loss learning problems.
arXiv Detail & Related papers (2020-06-08T03:35:41Z) - Implicit differentiation of Lasso-type models for hyperparameter
optimization [82.73138686390514]
We introduce an efficient implicit differentiation algorithm, without matrix inversion, tailored for Lasso-type problems.
Our approach scales to high-dimensional data by leveraging the sparsity of the solutions.
arXiv Detail & Related papers (2020-02-20T18:43:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.