論文の概要: Contrastive Representation Learning for 3D Protein Structures
- arxiv url: http://arxiv.org/abs/2205.15675v1
- Date: Tue, 31 May 2022 10:33:06 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-01 15:12:19.785918
- Title: Contrastive Representation Learning for 3D Protein Structures
- Title(参考訳): 3次元タンパク質構造のコントラスト表現学習
- Authors: Pedro Hermosilla and Timo Ropinski
- Abstract要約: 本稿では3次元タンパク質構造のための新しい表現学習フレームワークを提案する。
我々のフレームワークは、教師なしのコントラスト学習を用いて、タンパク質構造の意味のある表現を学習する。
これらの表現は、タンパク質機能予測、タンパク質の折りたたみ分類、構造的類似性予測、タンパク質-リガンド結合親和性予測など、様々なタスクを解くためにどのように使用できるかを示す。
- 参考スコア(独自算出の注目度): 13.581113136149469
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Learning from 3D protein structures has gained wide interest in protein
modeling and structural bioinformatics. Unfortunately, the number of available
structures is orders of magnitude lower than the training data sizes commonly
used in computer vision and machine learning. Moreover, this number is reduced
even further, when only annotated protein structures can be considered, making
the training of existing models difficult and prone to over-fitting. To address
this challenge, we introduce a new representation learning framework for 3D
protein structures. Our framework uses unsupervised contrastive learning to
learn meaningful representations of protein structures, making use of proteins
from the Protein Data Bank. We show, how these representations can be used to
solve a large variety of tasks, such as protein function prediction, protein
fold classification, structural similarity prediction, and protein-ligand
binding affinity prediction. Moreover, we show how fine-tuned networks,
pre-trained with our algorithm, lead to significantly improved task
performance, achieving new state-of-the-art results in many tasks.
- Abstract(参考訳): 3Dタンパク質構造からの学習は、タンパク質モデリングと構造生物情報学に広く関心を集めている。
残念ながら、利用可能な構造の数は、コンピュータビジョンや機械学習で一般的に使用されるトレーニングデータサイズよりも桁違いに少ない。
さらに、アノテートされたタンパク質構造のみを考慮すれば、この数がさらに減少し、既存のモデルのトレーニングが難しくなり、過剰に適合しやすくなる。
この課題に対処するために、3Dタンパク質構造のための新しい表現学習フレームワークを導入する。
我々のフレームワークは、教師なしのコントラスト学習を用いて、タンパク質構造の意味のある表現を学習し、タンパク質データバンクからタンパク質を利用する。
我々は、これらの表現がタンパク質機能予測、タンパク質折り畳み分類、構造類似性予測、タンパク質結合親和性予測など、様々なタスクの解決にどのように役立つかを示す。
さらに,アルゴリズムで事前学習した細かなネットワークがタスク性能を著しく向上させ,多数のタスクで新たな最先端結果が得られることを示す。
関連論文リスト
- Geometric Self-Supervised Pretraining on 3D Protein Structures using Subgraphs [26.727436310732692]
本稿では,3次元タンパク質構造上の3次元グラフニューラルネットワークを事前学習するための自己教師型手法を提案する。
提案手法が6%までの大幅な改善につながることを実験的に示す。
論文 参考訳(メタデータ) (2024-06-20T09:34:31Z) - Protein 3D Graph Structure Learning for Robust Structure-based Protein
Property Prediction [43.46012602267272]
タンパク質の構造に基づく特性予測は、様々な生物学的タスクにおいて有望なアプローチとして現れてきた。
現在のプラクティスは、推論中に正確に予測された構造を用いるだけで、予測精度の顕著な低下に悩まされている。
本フレームワークはモデルに依存しず,予測構造と実験構造の両方の特性予測の改善に有効である。
論文 参考訳(メタデータ) (2023-10-14T08:43:42Z) - CCPL: Cross-modal Contrastive Protein Learning [47.095862120116976]
我々は、新しい教師なしタンパク質構造表現事前学習法、クロスモーダルコントラスト型タンパク質学習(CCPL)を導入する。
CCPLは堅牢なタンパク質言語モデルを活用し、教師なしのコントラストアライメントを用いて構造学習を強化する。
さまざまなベンチマークでモデルを評価し,フレームワークの優位性を実証した。
論文 参考訳(メタデータ) (2023-03-19T08:19:10Z) - A Systematic Study of Joint Representation Learning on Protein Sequences
and Structures [38.94729758958265]
効果的なタンパク質表現の学習は、タンパク質機能の予測のような生物学の様々なタスクにおいて重要である。
近年, タンパク質言語モデル(PLM)に基づく配列表現学習法は, 配列ベースタスクでは優れているが, タンパク質構造に関わるタスクへの直接適応は依然として困難である。
本研究は、最先端のPLMと異なる構造エンコーダを統合することで、結合タンパク質表現学習の包括的研究を行う。
論文 参考訳(メタデータ) (2023-03-11T01:24:10Z) - Data-Efficient Protein 3D Geometric Pretraining via Refinement of
Diffused Protein Structure Decoy [42.49977473599661]
有意義なタンパク質表現の学習は、構造に基づく薬物設計のような様々な生物学的下流のタスクにとって重要である。
本稿では,タンパク質事前学習のための統一的なフレームワークと,幾何学的,データ効率,およびタンパク質特異的プリテキストタスクであるRefineDiffを提案する。
論文 参考訳(メタデータ) (2023-02-05T14:13:32Z) - Integration of Pre-trained Protein Language Models into Geometric Deep
Learning Networks [68.90692290665648]
我々は、タンパク質言語モデルから学んだ知識を、いくつかの最先端の幾何学的ネットワークに統合する。
以上の結果から,ベースラインを20%上回る総合的な改善が見られた。
強い証拠は、タンパク質言語モデルの知識を取り入れることで、幾何学的ネットワークの能力が著しく向上することを示している。
論文 参考訳(メタデータ) (2022-12-07T04:04:04Z) - Learning Geometrically Disentangled Representations of Protein Folding
Simulations [72.03095377508856]
この研究は、薬物標的タンパク質の構造的アンサンブルに基づいて生成ニューラルネットワークを学習することに焦点を当てている。
モデル課題は、様々な薬物分子に結合したタンパク質の構造的変動を特徴付けることである。
その結果,我々の幾何学的学習に基づく手法は,複雑な構造変化を生成するための精度と効率の両方を享受できることがわかった。
論文 参考訳(メタデータ) (2022-05-20T19:38:00Z) - Structure-aware Protein Self-supervised Learning [50.04673179816619]
本稿では,タンパク質の構造情報を取得するための構造認識型タンパク質自己教師学習法を提案する。
特に、タンパク質構造情報を保存するために、よく設計されたグラフニューラルネットワーク(GNN)モデルを事前訓練する。
タンパク質言語モデルにおける逐次情報と特別に設計されたGNNモデルにおける構造情報との関係を,新しい擬似二段階最適化手法を用いて同定する。
論文 参考訳(メタデータ) (2022-04-06T02:18:41Z) - Transfer Learning for Protein Structure Classification at Low Resolution [124.5573289131546]
タンパク質のクラスとアーキテクチャの正確な(geq$80%)予測を、低い(leq$3A)解像度で決定された構造から行うことができることを示す。
本稿では, 高速で低コストなタンパク質構造を低解像度で分類するための概念実証と, 機能予測への拡張の基礎を提供する。
論文 参考訳(メタデータ) (2020-08-11T15:01:32Z) - BERTology Meets Biology: Interpreting Attention in Protein Language
Models [124.8966298974842]
注目レンズを用いたタンパク質トランスフォーマーモデルの解析方法を示す。
注意はタンパク質の折りたたみ構造を捉え、基礎となる配列では遠く離れているが、三次元構造では空間的に近接しているアミノ酸を接続する。
また、注意とタンパク質構造との相互作用を三次元的に可視化する。
論文 参考訳(メタデータ) (2020-06-26T21:50:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。