Subgraph Matching via Query-Conditioned Subgraph Matching Neural
Networks and Bi-Level Tree Search
- URL: http://arxiv.org/abs/2207.10305v1
- Date: Thu, 21 Jul 2022 04:47:21 GMT
- Title: Subgraph Matching via Query-Conditioned Subgraph Matching Neural
Networks and Bi-Level Tree Search
- Authors: Yunsheng Bai, Derek Xu, Yizhou Sun, Wei Wang
- Abstract summary: Subgraph Matching is a core operation in graph database search, biomedical analysis, social group finding, etc.
In this paper, we propose a novel encoder-decoder neural network architecture to dynamically compute the matching information between the query and the target graphs.
Experiments on five large real-world target graphs show that N-BLS can significantly improve the subgraph matching performance.
- Score: 33.9052190473029
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advances have shown the success of using reinforcement learning and
search to solve NP-hard graph-related tasks, such as Traveling Salesman
Optimization, Graph Edit Distance computation, etc. However, it remains unclear
how one can efficiently and accurately detect the occurrences of a small query
graph in a large target graph, which is a core operation in graph database
search, biomedical analysis, social group finding, etc. This task is called
Subgraph Matching which essentially performs subgraph isomorphism check between
a query graph and a large target graph. One promising approach to this
classical problem is the "learning-to-search" paradigm, where a reinforcement
learning (RL) agent is designed with a learned policy to guide a search
algorithm to quickly find the solution without any solved instances for
supervision. However, for the specific task of Subgraph Matching, though the
query graph is usually small given by the user as input, the target graph is
often orders-of-magnitude larger. It poses challenges to the neural network
design and can lead to solution and reward sparsity. In this paper, we propose
N-BLS with two innovations to tackle the challenges: (1) A novel
encoder-decoder neural network architecture to dynamically compute the matching
information between the query and the target graphs at each search state; (2) A
Monte Carlo Tree Search enhanced bi-level search framework for training the
policy and value networks. Experiments on five large real-world target graphs
show that N-BLS can significantly improve the subgraph matching performance.
Related papers
- SPGNN: Recognizing Salient Subgraph Patterns via Enhanced Graph Convolution and Pooling [25.555741218526464]
Graph neural networks (GNNs) have revolutionized the field of machine learning on non-Euclidean data such as graphs and networks.
We propose a concatenation-based graph convolution mechanism that injectively updates node representations.
We also design a novel graph pooling module, called WL-SortPool, to learn important subgraph patterns in a deep-learning manner.
arXiv Detail & Related papers (2024-04-21T13:11:59Z) - Learning to Count Isomorphisms with Graph Neural Networks [16.455234748896157]
Subgraph isomorphism counting is an important problem on graphs.
In this paper, we propose a novel graph neural network (GNN) called Count-GNN for subgraph isomorphism counting.
arXiv Detail & Related papers (2023-02-07T05:32:11Z) - Automatic Relation-aware Graph Network Proliferation [182.30735195376792]
We propose Automatic Relation-aware Graph Network Proliferation (ARGNP) for efficiently searching GNNs.
These operations can extract hierarchical node/relational information and provide anisotropic guidance for message passing on a graph.
Experiments on six datasets for four graph learning tasks demonstrate that GNNs produced by our method are superior to the current state-of-the-art hand-crafted and search-based GNNs.
arXiv Detail & Related papers (2022-05-31T10:38:04Z) - Arch-Graph: Acyclic Architecture Relation Predictor for
Task-Transferable Neural Architecture Search [96.31315520244605]
Arch-Graph is a transferable NAS method that predicts task-specific optimal architectures.
We show Arch-Graph's transferability and high sample efficiency across numerous tasks.
It is able to find top 0.16% and 0.29% architectures on average on two search spaces under the budget of only 50 models.
arXiv Detail & Related papers (2022-04-12T16:46:06Z) - Neural Graph Matching for Pre-training Graph Neural Networks [72.32801428070749]
Graph neural networks (GNNs) have been shown powerful capacity at modeling structural data.
We present a novel Graph Matching based GNN Pre-Training framework, called GMPT.
The proposed method can be applied to fully self-supervised pre-training and coarse-grained supervised pre-training.
arXiv Detail & Related papers (2022-03-03T09:53:53Z) - Interactive Visual Pattern Search on Graph Data via Graph Representation
Learning [20.795511688640296]
We propose a visual analytics system GraphQ to support human-in-the-loop, example-based, subgraph pattern search.
To support fast, interactive queries, we use graph neural networks (GNNs) to encode a graph as fixed-length latent vector representation.
We also propose a novel GNN for node-alignment called NeuroAlign to facilitate easy validation and interpretation of the query results.
arXiv Detail & Related papers (2022-02-18T22:30:28Z) - Reinforcement Learning Based Query Vertex Ordering Model for Subgraph
Matching [58.39970828272366]
Subgraph matching algorithms enumerate all is embeddings of a query graph in a data graph G.
matching order plays a critical role in time efficiency of these backtracking based subgraph matching algorithms.
In this paper, for the first time we apply the Reinforcement Learning (RL) and Graph Neural Networks (GNNs) techniques to generate the high-quality matching order for subgraph matching algorithms.
arXiv Detail & Related papers (2022-01-25T00:10:03Z) - Second-Order Pooling for Graph Neural Networks [62.13156203025818]
We propose to use second-order pooling as graph pooling, which naturally solves the above challenges.
We show that direct use of second-order pooling with graph neural networks leads to practical problems.
We propose two novel global graph pooling methods based on second-order pooling; namely, bilinear mapping and attentional second-order pooling.
arXiv Detail & Related papers (2020-07-20T20:52:36Z) - Neural Subgraph Matching [57.05893848555512]
NeuroMatch is an accurate, efficient, and robust neural approach to subgraph matching.
NeuroMatch is 100x faster than existing geometric approaches and 18% more accurate than existing subgraph matching methods.
arXiv Detail & Related papers (2020-07-06T22:06:38Z) - GLSearch: Maximum Common Subgraph Detection via Learning to Search [33.9052190473029]
We propose GLSearch, a Graph Neural Network (GNN) based learning to search model.
Our model is built upon the branch and bound bound, which selects one pair of nodes from the two input graphs to expand at a time.
Our GLSearch can be potentially extended to solve many other problems with constraints on graphs.
arXiv Detail & Related papers (2020-02-08T10:03:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.