論文の概要: Transformers for Multi-Object Tracking on Point Clouds
- arxiv url: http://arxiv.org/abs/2205.15730v1
- Date: Tue, 31 May 2022 12:20:54 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-01 13:30:52.131493
- Title: Transformers for Multi-Object Tracking on Point Clouds
- Title(参考訳): 点雲のマルチオブジェクト追跡のためのトランスフォーマー
- Authors: Felicia Ruppel, Florian Faion, Claudius Gl\"aser and Klaus Dietmayer
- Abstract要約: TransMOTは、新しいトランスフォーマーベースのトレーニング可能なオンライントラッカーで、ポイントクラウドデータのための検出器である。
このモデルはクロス・アンド・セルフ・アテンション・メカニズムを利用しており、自動車のコンテキストにおけるライダーデータに適用可能である。
提案したモデルは、Kalmanフィルタベースのトラッキングベースラインよりも優れている。
- 参考スコア(独自算出の注目度): 9.287964414592826
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present TransMOT, a novel transformer-based end-to-end trainable online
tracker and detector for point cloud data. The model utilizes a cross- and a
self-attention mechanism and is applicable to lidar data in an automotive
context, as well as other data types, such as radar. Both track management and
the detection of new tracks are performed by the same transformer decoder
module and the tracker state is encoded in feature space. With this approach,
we make use of the rich latent space of the detector for tracking rather than
relying on low-dimensional bounding boxes. Still, we are able to retain some of
the desirable properties of traditional Kalman-filter based approaches, such as
an ability to handle sensor input at arbitrary timesteps or to compensate frame
skips. This is possible due to a novel module that transforms the track
information from one frame to the next on feature-level and thereby fulfills a
similar task as the prediction step of a Kalman filter. Results are presented
on the challenging real-world dataset nuScenes, where the proposed model
outperforms its Kalman filter-based tracking baseline.
- Abstract(参考訳): TransMOTは、新しいトランスフォーマーベースのトレーニング可能なオンライントラッカーで、ポイントクラウドデータのための検出器である。
このモデルは、クロス・アンド・セルフ・アテンション・メカニズムを使用しており、自動車のコンテキストにおけるライダーデータやレーダーなどの他のデータタイプに適用できる。
トラック管理と新しいトラックの検出は、同一のトランスフォーマーデコーダモジュールによって行われ、トラッカー状態は特徴空間で符号化される。
このアプローチでは、低次元の有界箱に頼るのではなく、検知器のリッチな潜在空間を用いて追跡を行う。
それでも、センサ入力を任意のタイミングで処理したり、フレームスキップを補償したりといった、従来のKalman-filterベースのアプローチの望ましい特性を維持できます。
これは、1つのフレームから次のフレームに特徴レベルでトラック情報を変換し、カルマンフィルタの予測ステップと同じようなタスクを果たす新しいモジュールによって可能となる。
実世界のデータセットであるnuscenesでは、提案モデルがkalmanフィルタベースのトラッキングベースラインを上回っている。
関連論文リスト
- Detection Is Tracking: Point Cloud Multi-Sweep Deep Learning Models Revisited [0.0]
自律運転では、ライダー測定は通常、ディープラーニングモデルによって実現された「仮想センサー」を介して行われる。
本稿では,このような入力には時間的情報が含まれており,仮想センサの出力には時間的情報も含むべきであると論じる。
本稿では,MULti-Sweep PAired Detector (MULSPAD)と呼ばれる深層学習モデルを提案する。
論文 参考訳(メタデータ) (2024-02-24T08:07:48Z) - UnLoc: A Universal Localization Method for Autonomous Vehicles using
LiDAR, Radar and/or Camera Input [51.150605800173366]
UnLocは、全ての気象条件におけるマルチセンサー入力によるローカライズのための、新しい統一型ニューラルネットワークアプローチである。
本手法は,Oxford Radar RobotCar,Apollo SouthBay,Perth-WAの各データセットで広く評価されている。
論文 参考訳(メタデータ) (2023-07-03T04:10:55Z) - TrajectoryFormer: 3D Object Tracking Transformer with Predictive
Trajectory Hypotheses [51.60422927416087]
3Dマルチオブジェクトトラッキング(MOT)は、自律走行車やサービスロボットを含む多くのアプリケーションにとって不可欠である。
本稿では,新しいポイントクラウドベースの3DMOTフレームワークであるTrjectoryFormerを紹介する。
論文 参考訳(メタデータ) (2023-06-09T13:31:50Z) - Transformers for Object Detection in Large Point Clouds [9.287964414592826]
トランスLPC(TransLPC)は,変圧器アーキテクチャに基づく大点雲の新しい検出モデルである。
本稿では,メモリフレンドリーな変圧器デコーダクエリ数を維持しながら,検出精度を向上させる新しいクエリ改善手法を提案する。
この単純な手法は検出精度に大きな影響を与え、実際のライダーデータ上での挑戦的なnuScenesデータセットで評価される。
論文 参考訳(メタデータ) (2022-09-30T06:35:43Z) - Bag of Tricks for Domain Adaptive Multi-Object Tracking [4.084199842578325]
提案手法は,既存の検出器とトラッカーを用いて,トラッキング・バイ・ディテクト・パラダイムを用いて構築された。
私たちが使ったトラッカーはオンライントラッカーで、新たに受信した検出を既存のトラックにリンクするだけです。
SIA_TrackはBMTT 2022チャレンジでMOT Synth2MOT17トラックで1位となった。
論文 参考訳(メタデータ) (2022-05-31T08:49:20Z) - Joint Spatial-Temporal and Appearance Modeling with Transformer for
Multiple Object Tracking [59.79252390626194]
本稿ではTransSTAMという新しい手法を提案する。Transformerを利用して各オブジェクトの外観特徴とオブジェクト間の空間的時間的関係の両方をモデル化する。
提案手法はMOT16, MOT17, MOT20を含む複数の公開ベンチマークで評価され, IDF1とHOTAの両方で明確な性能向上を実現している。
論文 参考訳(メタデータ) (2022-05-31T01:19:18Z) - MFGNet: Dynamic Modality-Aware Filter Generation for RGB-T Tracking [72.65494220685525]
可視データと熱データ間のメッセージ通信を促進するために,新しい動的モダリティ対応フィルタ生成モジュール(MFGNet)を提案する。
我々は、2つの独立ネットワークを持つ動的モダリティ対応フィルタを生成し、その可視フィルタとサーマルフィルタをそれぞれ、対応する入力特徴写像上で動的畳み込み演算を行う。
重閉塞,高速移動,外見による問題に対処するため,新たな方向認識型目標誘導型アテンション機構を活用することで,共同で局所的・グローバル検索を行うことを提案する。
論文 参考訳(メタデータ) (2021-07-22T03:10:51Z) - TrTr: Visual Tracking with Transformer [29.415900191169587]
トランスフォーマーエンコーダデコーダアーキテクチャと呼ばれる強力な注意メカニズムに基づく新しいトラッカーネットワークを提案する。
形状非依存アンカーに基づくターゲットのローカライズを行うトランスの出力を用いて,分類と回帰ヘッドを設計する。
本手法は最先端のアルゴリズムに好適に作用する。
論文 参考訳(メタデータ) (2021-05-09T02:32:28Z) - Learning Spatio-Temporal Transformer for Visual Tracking [108.11680070733598]
本稿では,エンコーダ・デコーダ変換器をキーコンポーネントとする新しいトラッキングアーキテクチャを提案する。
メソッド全体がエンドツーエンドであり、コサインウィンドウやバウンディングボックススムーシングのような後処理ステップは不要である。
提案されたトラッカーは、Siam R-CNNよりも6倍速いリアルタイム速度を実行しながら、5つのチャレンジングな短期および長期ベンチマークで最先端のパフォーマンスを実現します。
論文 参考訳(メタデータ) (2021-03-31T15:19:19Z) - Transformer Tracking [76.96796612225295]
相関は追跡分野において、特に人気のあるシャム系トラッカーにおいて重要な役割を果たす。
本研究は,注意のみを用いてテンプレートと検索領域を効果的に結合した,新しい注意型特徴融合ネットワークを提案する。
実験により、TransTは6つの挑戦的なデータセットで非常に有望な結果が得られます。
論文 参考訳(メタデータ) (2021-03-29T09:06:55Z) - Trajectory saliency detection using consistency-oriented latent codes
from a recurrent auto-encoder [0.0]
軌道は、プログレッシブな動的サリエンシー検出をサポートする最良の方法です。
与えられた文脈に関連する共通の動きパターンを共有する通常の軌跡から逸脱した場合、軌跡は有能である。
本手法は,鉄道駅で取得した歩行者軌跡の公開データセットから得られた複数のシナリオにおいて,既存の手法に勝ることを示す。
論文 参考訳(メタデータ) (2020-12-17T13:29:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。