Braille Letter Reading: A Benchmark for Spatio-Temporal Pattern
Recognition on Neuromorphic Hardware
- URL: http://arxiv.org/abs/2205.15864v1
- Date: Mon, 30 May 2022 14:30:45 GMT
- Title: Braille Letter Reading: A Benchmark for Spatio-Temporal Pattern
Recognition on Neuromorphic Hardware
- Authors: Simon F Muller-Cleve, Vittorio Fra, Lyes Khacef, Alejandro
Pequeno-Zurro, Daniel Klepatsch, Evelina Forno, Diego G Ivanovich, Shavika
Rastogi, Gianvito Urgese, Friedemann Zenke, Chiara Bartolozzi
- Abstract summary: Recent deep learning approaches have reached accuracy in such tasks, but their implementation on conventional embedded solutions is still computationally very and energy expensive.
We propose a new benchmark for computing tactile pattern recognition at the edge through letters reading.
We trained and compared feed-forward and recurrent spiking neural networks (SNNs) offline using back-propagation through time with surrogate gradients, then we deployed them on the Intel Loihimorphic chip for efficient inference.
Our results show that the LSTM outperforms the recurrent SNN in terms of accuracy by 14%. However, the recurrent SNN on Loihi is 237 times more energy
- Score: 50.380319968947035
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spatio-temporal pattern recognition is a fundamental ability of the brain
which is required for numerous real-world applications. Recent deep learning
approaches have reached outstanding accuracy in such tasks, but their
implementation on conventional embedded solutions is still very computationally
and energy expensive. Tactile sensing in robotic applications is a
representative example where real-time processing and energy-efficiency are
required. Following a brain-inspired computing approach, we propose a new
benchmark for spatio-temporal tactile pattern recognition at the edge through
braille letters reading. We recorded a new braille letters dataset based on the
capacitive tactile sensors/fingertip of the iCub robot, then we investigated
the importance of temporal information and the impact of event-based encoding
for spike-based/event-based computation. Afterwards, we trained and compared
feed-forward and recurrent spiking neural networks (SNNs) offline using
back-propagation through time with surrogate gradients, then we deployed them
on the Intel Loihi neuromorphic chip for fast and efficient inference. We
confronted our approach to standard classifiers, in particular to a Long
Short-Term Memory (LSTM) deployed on the embedded Nvidia Jetson GPU in terms of
classification accuracy, power/energy consumption and computational delay. Our
results show that the LSTM outperforms the recurrent SNN in terms of accuracy
by 14%. However, the recurrent SNN on Loihi is 237 times more energy-efficient
than the LSTM on Jetson, requiring an average power of only 31mW. This work
proposes a new benchmark for tactile sensing and highlights the challenges and
opportunities of event-based encoding, neuromorphic hardware and spike-based
computing for spatio-temporal pattern recognition at the edge.
Related papers
- Energy-Efficient Spiking Recurrent Neural Network for Gesture Recognition on Embedded GPUs [1.37621344207686]
This research explores the deployment of a spiking recurrent neural network (SRNN) with liquid time constant neurons for gesture recognition.
We focus on the energy efficiency and computational efficacy of NVIDIA Jetson Nano embedded GPU platforms.
arXiv Detail & Related papers (2024-08-23T10:50:29Z) - Low-power event-based face detection with asynchronous neuromorphic
hardware [2.0774873363739985]
We present the first instance of an on-chip spiking neural network for event-based face detection deployed on the SynSense Speck neuromorphic chip.
We show how to reduce precision discrepancies between off-chip clock-driven simulation used for training and on-chip event-driven inference.
We achieve an on-chip face detection mAP[0.5] of 0.6 while consuming only 20 mW.
arXiv Detail & Related papers (2023-12-21T19:23:02Z) - Ultra-low-power Image Classification on Neuromorphic Hardware [3.784976081087904]
Spiking neural networks (SNNs) promise ultra-low-power applications by exploiting temporal and spatial sparsity.
Training such SNNs using backpropagation through time for vision tasks that rely mainly on spatial features is computationally costly.
We propose a temporal ANN-to-SNN conversion method, which we call Quartz, that is based on the time to first spike.
arXiv Detail & Related papers (2023-09-28T18:53:43Z) - ETLP: Event-based Three-factor Local Plasticity for online learning with
neuromorphic hardware [105.54048699217668]
We show a competitive performance in accuracy with a clear advantage in the computational complexity for Event-Based Three-factor Local Plasticity (ETLP)
We also show that when using local plasticity, threshold adaptation in spiking neurons and a recurrent topology are necessary to learntemporal patterns with a rich temporal structure.
arXiv Detail & Related papers (2023-01-19T19:45:42Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
Spiking neural networks (SNNs) have achieved orders of magnitude improvement in terms of energy consumption and latency.
We present an IPU-optimized release of our custom SNN Python package, snnTorch.
arXiv Detail & Related papers (2022-11-19T15:44:08Z) - DNN Training Acceleration via Exploring GPGPU Friendly Sparsity [16.406482603838157]
We propose the Approximate Random Dropout that replaces the conventional random dropout of neurons and synapses with a regular and online generated row-based or tile-based dropout patterns.
We then develop a SGD-based Search Algorithm that produces the distribution of row-based or tile-based dropout patterns to compensate for the potential accuracy loss.
We also propose the sensitivity-aware dropout method to dynamically drop the input feature maps based on their sensitivity so as to achieve greater forward and backward training acceleration.
arXiv Detail & Related papers (2022-03-11T01:32:03Z) - FPGA-optimized Hardware acceleration for Spiking Neural Networks [69.49429223251178]
This work presents the development of a hardware accelerator for an SNN, with off-line training, applied to an image recognition task.
The design targets a Xilinx Artix-7 FPGA, using in total around the 40% of the available hardware resources.
It reduces the classification time by three orders of magnitude, with a small 4.5% impact on the accuracy, if compared to its software, full precision counterpart.
arXiv Detail & Related papers (2022-01-18T13:59:22Z) - Spike-inspired Rank Coding for Fast and Accurate Recurrent Neural
Networks [5.986408771459261]
Biological spiking neural networks (SNNs) can temporally encode information in their outputs, whereas artificial neural networks (ANNs) conventionally do not.
Here we show that temporal coding such as rank coding (RC) inspired by SNNs can also be applied to conventional ANNs such as LSTMs.
RC-training also significantly reduces time-to-insight during inference, with a minimal decrease in accuracy.
We demonstrate these in two toy problems of sequence classification, and in a temporally-encoded MNIST dataset where our RC model achieves 99.19% accuracy after the first input time-step
arXiv Detail & Related papers (2021-10-06T15:51:38Z) - One-step regression and classification with crosspoint resistive memory
arrays [62.997667081978825]
High speed, low energy computing machines are in demand to enable real-time artificial intelligence at the edge.
One-step learning is supported by simulations of the prediction of the cost of a house in Boston and the training of a 2-layer neural network for MNIST digit recognition.
Results are all obtained in one computational step, thanks to the physical, parallel, and analog computing within the crosspoint array.
arXiv Detail & Related papers (2020-05-05T08:00:07Z) - Temporal Pulses Driven Spiking Neural Network for Fast Object
Recognition in Autonomous Driving [65.36115045035903]
We propose an approach to address the object recognition problem directly with raw temporal pulses utilizing the spiking neural network (SNN)
Being evaluated on various datasets, our proposed method has shown comparable performance as the state-of-the-art methods, while achieving remarkable time efficiency.
arXiv Detail & Related papers (2020-01-24T22:58:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.