Hands-Up: Leveraging Synthetic Data for Hands-On-Wheel Detection
- URL: http://arxiv.org/abs/2206.00148v1
- Date: Tue, 31 May 2022 23:34:12 GMT
- Title: Hands-Up: Leveraging Synthetic Data for Hands-On-Wheel Detection
- Authors: Paul Yudkin, Eli Friedman, Orly Zvitia, Gil Elbaz
- Abstract summary: This work demonstrates the use of synthetic photo-realistic in-cabin data to train a Driver Monitoring System.
We show how performing error analysis and generating the missing edge-cases in our platform boosts performance.
This showcases the ability of human-centric synthetic data to generalize well to the real world.
- Score: 0.38233569758620045
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Over the past few years there has been major progress in the field of
synthetic data generation using simulation based techniques. These methods use
high-end graphics engines and physics-based ray-tracing rendering in order to
represent the world in 3D and create highly realistic images. Datagen has
specialized in the generation of high-quality 3D humans, realistic 3D
environments and generation of realistic human motion. This technology has been
developed into a data generation platform which we used for these experiments.
This work demonstrates the use of synthetic photo-realistic in-cabin data to
train a Driver Monitoring System that uses a lightweight neural network to
detect whether the driver's hands are on the wheel. We demonstrate that when
only a small amount of real data is available, synthetic data can be a simple
way to boost performance. Moreover, we adopt the data-centric approach and show
how performing error analysis and generating the missing edge-cases in our
platform boosts performance. This showcases the ability of human-centric
synthetic data to generalize well to the real world, and help train algorithms
in computer vision settings where data from the target domain is scarce or hard
to collect.
Related papers
- Enhancing Generalizability of Representation Learning for Data-Efficient 3D Scene Understanding [50.448520056844885]
We propose a generative Bayesian network to produce diverse synthetic scenes with real-world patterns.
A series of experiments robustly display our method's consistent superiority over existing state-of-the-art pre-training approaches.
arXiv Detail & Related papers (2024-06-17T07:43:53Z) - 3D Human Reconstruction in the Wild with Synthetic Data Using Generative Models [52.96248836582542]
We propose an effective approach based on recent diffusion models, termed HumanWild, which can effortlessly generate human images and corresponding 3D mesh annotations.
By exclusively employing generative models, we generate large-scale in-the-wild human images and high-quality annotations, eliminating the need for real-world data collection.
arXiv Detail & Related papers (2024-03-17T06:31:16Z) - VR-based generation of photorealistic synthetic data for training
hand-object tracking models [0.0]
"blender-hoisynth" is an interactive synthetic data generator based on the Blender software.
It is possible for users to interact with objects via virtual hands using standard Virtual Reality hardware.
We replace large parts of the training data in the well-known DexYCB dataset with hoisynth data and train a state-of-the-art HOI reconstruction model with it.
arXiv Detail & Related papers (2024-01-31T14:32:56Z) - Learning from synthetic data generated with GRADE [0.6982738885923204]
We present a framework for generating realistic animated dynamic environments (GRADE) for robotics research.
GRADE supports full simulation control, ROS integration, realistic physics, while being in an engine that produces high visual fidelity images and ground truth data.
We show that, even training using only synthetic data, can generalize well to real-world images in the same application domain.
arXiv Detail & Related papers (2023-05-07T14:13:04Z) - Development of a Realistic Crowd Simulation Environment for Fine-grained
Validation of People Tracking Methods [0.7223361655030193]
This work develops an extension of crowd simulation (named CrowdSim2) and prove its usability in the application of people-tracking algorithms.
The simulator is developed using the very popular Unity 3D engine with particular emphasis on the aspects of realism in the environment.
Three methods of tracking were used to validate generated dataset: IOU-Tracker, Deep-Sort, and Deep-TAMA.
arXiv Detail & Related papers (2023-04-26T09:29:58Z) - SCoDA: Domain Adaptive Shape Completion for Real Scans [78.92028595499245]
3D shape completion from point clouds is a challenging task, especially from scans of real-world objects.
We propose a new task, SCoDA, for the domain adaptation of real scan shape completion from synthetic data.
We propose a novel cross-domain feature fusion method for knowledge transfer and a novel volume-consistent self-training framework for robust learning from real data.
arXiv Detail & Related papers (2023-04-20T09:38:26Z) - A New Benchmark: On the Utility of Synthetic Data with Blender for Bare
Supervised Learning and Downstream Domain Adaptation [42.2398858786125]
Deep learning in computer vision has achieved great success with the price of large-scale labeled training data.
The uncontrollable data collection process produces non-IID training and test data, where undesired duplication may exist.
To circumvent them, an alternative is to generate synthetic data via 3D rendering with domain randomization.
arXiv Detail & Related papers (2023-03-16T09:03:52Z) - Unsupervised Traffic Scene Generation with Synthetic 3D Scene Graphs [83.9783063609389]
We propose a method based on domain-invariant scene representation to directly synthesize traffic scene imagery without rendering.
Specifically, we rely on synthetic scene graphs as our internal representation and introduce an unsupervised neural network architecture for realistic traffic scene synthesis.
arXiv Detail & Related papers (2023-03-15T09:26:29Z) - Learning to Simulate Realistic LiDARs [66.7519667383175]
We introduce a pipeline for data-driven simulation of a realistic LiDAR sensor.
We show that our model can learn to encode realistic effects such as dropped points on transparent surfaces.
We use our technique to learn models of two distinct LiDAR sensors and use them to improve simulated LiDAR data accordingly.
arXiv Detail & Related papers (2022-09-22T13:12:54Z) - Simple and Effective Synthesis of Indoor 3D Scenes [78.95697556834536]
We study the problem of immersive 3D indoor scenes from one or more images.
Our aim is to generate high-resolution images and videos from novel viewpoints.
We propose an image-to-image GAN that maps directly from reprojections of incomplete point clouds to full high-resolution RGB-D images.
arXiv Detail & Related papers (2022-04-06T17:54:46Z) - UnrealROX+: An Improved Tool for Acquiring Synthetic Data from Virtual
3D Environments [14.453602631430508]
We present an improved version of UnrealROX, a tool to generate synthetic data from robotic images.
Un UnrealROX+ includes new features such as generating albedo or a Python API for interacting with the virtual environment from Deep Learning frameworks.
arXiv Detail & Related papers (2021-04-23T18:45:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.