Enhancing Generalizability of Representation Learning for Data-Efficient 3D Scene Understanding
- URL: http://arxiv.org/abs/2406.11283v1
- Date: Mon, 17 Jun 2024 07:43:53 GMT
- Title: Enhancing Generalizability of Representation Learning for Data-Efficient 3D Scene Understanding
- Authors: Yunsong Wang, Na Zhao, Gim Hee Lee,
- Abstract summary: We propose a generative Bayesian network to produce diverse synthetic scenes with real-world patterns.
A series of experiments robustly display our method's consistent superiority over existing state-of-the-art pre-training approaches.
- Score: 50.448520056844885
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The field of self-supervised 3D representation learning has emerged as a promising solution to alleviate the challenge presented by the scarcity of extensive, well-annotated datasets. However, it continues to be hindered by the lack of diverse, large-scale, real-world 3D scene datasets for source data. To address this shortfall, we propose Generalizable Representation Learning (GRL), where we devise a generative Bayesian network to produce diverse synthetic scenes with real-world patterns, and conduct pre-training with a joint objective. By jointly learning a coarse-to-fine contrastive learning task and an occlusion-aware reconstruction task, the model is primed with transferable, geometry-informed representations. Post pre-training on synthetic data, the acquired knowledge of the model can be seamlessly transferred to two principal downstream tasks associated with 3D scene understanding, namely 3D object detection and 3D semantic segmentation, using real-world benchmark datasets. A thorough series of experiments robustly display our method's consistent superiority over existing state-of-the-art pre-training approaches.
Related papers
- SUGAR: Pre-training 3D Visual Representations for Robotics [85.55534363501131]
We introduce a novel 3D pre-training framework for robotics named SUGAR.
SUGAR captures semantic, geometric and affordance properties of objects through 3D point clouds.
We show that SUGAR's 3D representation outperforms state-of-the-art 2D and 3D representations.
arXiv Detail & Related papers (2024-04-01T21:23:03Z) - 3D Adversarial Augmentations for Robust Out-of-Domain Predictions [115.74319739738571]
We focus on improving the generalization to out-of-domain data.
We learn a set of vectors that deform the objects in an adversarial fashion.
We perform adversarial augmentation by applying the learned sample-independent vectors to the available objects when training a model.
arXiv Detail & Related papers (2023-08-29T17:58:55Z) - A New Benchmark: On the Utility of Synthetic Data with Blender for Bare
Supervised Learning and Downstream Domain Adaptation [42.2398858786125]
Deep learning in computer vision has achieved great success with the price of large-scale labeled training data.
The uncontrollable data collection process produces non-IID training and test data, where undesired duplication may exist.
To circumvent them, an alternative is to generate synthetic data via 3D rendering with domain randomization.
arXiv Detail & Related papers (2023-03-16T09:03:52Z) - Spatio-temporal Self-Supervised Representation Learning for 3D Point
Clouds [96.9027094562957]
We introduce a-temporal representation learning framework, capable of learning from unlabeled tasks.
Inspired by how infants learn from visual data in the wild, we explore rich cues derived from the 3D data.
STRL takes two temporally-related frames from a 3D point cloud sequence as the input, transforms it with the spatial data augmentation, and learns the invariant representation self-supervisedly.
arXiv Detail & Related papers (2021-09-01T04:17:11Z) - RandomRooms: Unsupervised Pre-training from Synthetic Shapes and
Randomized Layouts for 3D Object Detection [138.2892824662943]
A promising solution is to make better use of the synthetic dataset, which consists of CAD object models, to boost the learning on real datasets.
Recent work on 3D pre-training exhibits failure when transfer features learned on synthetic objects to other real-world applications.
In this work, we put forward a new method called RandomRooms to accomplish this objective.
arXiv Detail & Related papers (2021-08-17T17:56:12Z) - PointContrast: Unsupervised Pre-training for 3D Point Cloud
Understanding [107.02479689909164]
In this work, we aim at facilitating research on 3D representation learning.
We measure the effect of unsupervised pre-training on a large source set of 3D scenes.
arXiv Detail & Related papers (2020-07-21T17:59:22Z) - Info3D: Representation Learning on 3D Objects using Mutual Information
Maximization and Contrastive Learning [8.448611728105513]
We propose to extend the InfoMax and contrastive learning principles on 3D shapes.
We show that we can maximize the mutual information between 3D objects and their "chunks" to improve the representations in aligned datasets.
arXiv Detail & Related papers (2020-06-04T00:30:26Z) - Joint Supervised and Self-Supervised Learning for 3D Real-World
Challenges [16.328866317851187]
Point cloud processing and 3D shape understanding are challenging tasks for which deep learning techniques have demonstrated great potentials.
Here we consider several possible scenarios involving synthetic and real-world point clouds where supervised learning fails due to data scarcity and large domain gaps.
We propose to enrich standard feature representations by leveraging self-supervision through a multi-task model that can solve a 3D puzzle while learning the main task of shape classification or part segmentation.
arXiv Detail & Related papers (2020-04-15T23:34:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.