CellCentroidFormer: Combining Self-attention and Convolution for Cell
Detection
- URL: http://arxiv.org/abs/2206.00338v1
- Date: Wed, 1 Jun 2022 09:04:39 GMT
- Title: CellCentroidFormer: Combining Self-attention and Convolution for Cell
Detection
- Authors: Royden Wagner and Karl Rohr
- Abstract summary: We propose a novel hybrid CNN-ViT model for cell detection in microscopy images.
Our centroid-based cell detection method represents cells as ellipses and is end-to-end trainable.
- Score: 4.555723508665994
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Cell detection in microscopy images is important to study how cells move and
interact with their environment. Most recent deep learning-based methods for
cell detection use convolutional neural networks (CNNs). However, inspired by
the success in other computer vision applications, vision transformers (ViTs)
are also used for this purpose. We propose a novel hybrid CNN-ViT model for
cell detection in microscopy images to exploit the advantages of both types of
deep learning models. We employ an efficient CNN, that was pre-trained on the
ImageNet dataset, to extract image features and utilize transfer learning to
reduce the amount of required training data. Extracted image features are
further processed by a combination of convolutional and transformer layers, so
that the convolutional layers can focus on local information and the
transformer layers on global information. Our centroid-based cell detection
method represents cells as ellipses and is end-to-end trainable. Furthermore,
we show that our proposed model can outperform a fully convolutional baseline
model on four different 2D microscopy datasets. Code is available at:
https://github.com/roydenwa/cell-centroid-former
Related papers
- Practical Guidelines for Cell Segmentation Models Under Optical Aberrations in Microscopy [14.042884268397058]
This study evaluates cell image segmentation models under optical aberrations from fluorescence and bright field microscopy.
We train and test several segmentation models, including the Otsu threshold method and Mask R-CNN with different network heads.
In contrast, Cellpose 2.0 proves effective for complex cell images under similar conditions.
arXiv Detail & Related papers (2024-04-12T15:45:26Z) - Cell Graph Transformer for Nuclei Classification [78.47566396839628]
We develop a cell graph transformer (CGT) that treats nodes and edges as input tokens to enable learnable adjacency and information exchange among all nodes.
Poorly features can lead to noisy self-attention scores and inferior convergence.
We propose a novel topology-aware pretraining method that leverages a graph convolutional network (GCN) to learn a feature extractor.
arXiv Detail & Related papers (2024-02-20T12:01:30Z) - Learning Multimodal Volumetric Features for Large-Scale Neuron Tracing [72.45257414889478]
We aim to reduce human workload by predicting connectivity between over-segmented neuron pieces.
We first construct a dataset, named FlyTracing, that contains millions of pairwise connections of segments expanding the whole fly brain.
We propose a novel connectivity-aware contrastive learning method to generate dense volumetric EM image embedding.
arXiv Detail & Related papers (2024-01-05T19:45:12Z) - Affine-Consistent Transformer for Multi-Class Cell Nuclei Detection [76.11864242047074]
We propose a novel Affine-Consistent Transformer (AC-Former), which directly yields a sequence of nucleus positions.
We introduce an Adaptive Affine Transformer (AAT) module, which can automatically learn the key spatial transformations to warp original images for local network training.
Experimental results demonstrate that the proposed method significantly outperforms existing state-of-the-art algorithms on various benchmarks.
arXiv Detail & Related papers (2023-10-22T02:27:02Z) - Classification of EEG Motor Imagery Using Deep Learning for
Brain-Computer Interface Systems [79.58173794910631]
A trained T1 class Convolutional Neural Network (CNN) model will be used to examine its ability to successfully identify motor imagery.
In theory, and if the model has been trained accurately, it should be able to identify a class and label it accordingly.
The CNN model will then be restored and used to try and identify the same class of motor imagery data using much smaller sampled data.
arXiv Detail & Related papers (2022-05-31T17:09:46Z) - EfficientCellSeg: Efficient Volumetric Cell Segmentation Using Context
Aware Pseudocoloring [4.555723508665994]
We introduce a small convolutional neural network (CNN) for volumetric cell segmentation.
Our model is efficient and has an asymmetric encoder-decoder structure with very few parameters in the decoder.
Our method achieves top-ranking results, while our CNN model has an up to 25x lower number of parameters than other top-ranking methods.
arXiv Detail & Related papers (2022-04-06T18:02:15Z) - From augmented microscopy to the topological transformer: a new approach
in cell image analysis for Alzheimer's research [0.0]
Cell image analysis is crucial in Alzheimer's research to detect the presence of A$beta$ protein inhibiting cell function.
We first found Unet is most suitable in augmented microscopy by comparing performance in multi-class semantics segmentation.
We develop the augmented microscopy method to capture nuclei in a brightfield image and the transformer using Unet model to convert an input image into a sequence of topological information.
arXiv Detail & Related papers (2021-08-03T16:59:33Z) - Enforcing Morphological Information in Fully Convolutional Networks to
Improve Cell Instance Segmentation in Fluorescence Microscopy Images [1.408123603417833]
We propose a novel cell instance segmentation approach based on the well-known U-Net architecture.
To enforce the learning of morphological information per pixel, a deep distance transformer (DDT) acts as a back-bone model.
The obtained results suggest a performance boost over traditional U-Net architectures.
arXiv Detail & Related papers (2021-06-10T15:54:38Z) - Comparisons among different stochastic selection of activation layers
for convolutional neural networks for healthcare [77.99636165307996]
We classify biomedical images using ensembles of neural networks.
We select our activations among the following ones: ReLU, leaky ReLU, Parametric ReLU, ELU, Adaptive Piecewice Linear Unit, S-Shaped ReLU, Swish, Mish, Mexican Linear Unit, Parametric Deformable Linear Unit, Soft Root Sign.
arXiv Detail & Related papers (2020-11-24T01:53:39Z) - Neural Cellular Automata Manifold [84.08170531451006]
We show that the neural network architecture of the Neural Cellular Automata can be encapsulated in a larger NN.
This allows us to propose a new model that encodes a manifold of NCA, each of them capable of generating a distinct image.
In biological terms, our approach would play the role of the transcription factors, modulating the mapping of genes into specific proteins that drive cellular differentiation.
arXiv Detail & Related papers (2020-06-22T11:41:57Z) - Cell Segmentation and Tracking using CNN-Based Distance Predictions and
a Graph-Based Matching Strategy [0.20999222360659608]
We present a method for the segmentation of touching cells in microscopy images.
By using a novel representation of cell borders, inspired by distance maps, our method is capable to utilize not only touching cells but also close cells in the training process.
This representation is notably robust to annotation errors and shows promising results for the segmentation of microscopy images containing in the training data underrepresented or not included cell types.
arXiv Detail & Related papers (2020-04-03T11:55:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.