論文の概要: Federated Learning in Non-IID Settings Aided by Differentially Private
Synthetic Data
- arxiv url: http://arxiv.org/abs/2206.00686v2
- Date: Thu, 20 Apr 2023 01:50:34 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-21 17:36:52.630927
- Title: Federated Learning in Non-IID Settings Aided by Differentially Private
Synthetic Data
- Title(参考訳): 微分プライベート合成データを用いた非IID環境におけるフェデレーション学習
- Authors: Huancheng Chen and Haris Vikalo
- Abstract要約: Federated Learning(FL)は、クライアントが機械学習モデルを協調的にトレーニングすることを可能にする、プライバシプロモーティングフレームワークである。
連合学習における大きな課題は、局所データが不均一であるときに生じる。
我々は、クライアントが変動自動エンコーダをデプロイして、遅延データ表現の微分プライベートな手段を用いて、ローカルデータセットを合成するFLアルゴリズムであるFedDPMSを提案する。
- 参考スコア(独自算出の注目度): 20.757477553095637
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning (FL) is a privacy-promoting framework that enables
potentially large number of clients to collaboratively train machine learning
models. In a FL system, a server coordinates the collaboration by collecting
and aggregating clients' model updates while the clients' data remains local
and private. A major challenge in federated learning arises when the local data
is heterogeneous -- the setting in which performance of the learned global
model may deteriorate significantly compared to the scenario where the data is
identically distributed across the clients. In this paper we propose FedDPMS
(Federated Differentially Private Means Sharing), an FL algorithm in which
clients deploy variational auto-encoders to augment local datasets with data
synthesized using differentially private means of latent data representations
communicated by a trusted server. Such augmentation ameliorates effects of data
heterogeneity across the clients without compromising privacy. Our experiments
on deep image classification tasks demonstrate that FedDPMS outperforms
competing state-of-the-art FL methods specifically designed for heterogeneous
data settings.
- Abstract(参考訳): フェデレートラーニング(FL)は、潜在的に多くのクライアントが機械学習モデルを協調的にトレーニングできるようにする、プライバシプロモーティングフレームワークである。
FLシステムでは、サーバがクライアントのモデル更新を収集・集約することで協調を調整し、クライアントのデータはローカルおよびプライベートのままである。
ローカルデータが不均一である場合 -- 学習したグローバルモデルのパフォーマンスが、クライアント間でデータを同一に分散するシナリオに比べて大幅に低下する可能性がある設定 — において、フェデレート学習の大きな課題が生じる。
本稿では,FedDPMS(Federated Differentially Private Means Sharing)を提案する。FLアルゴリズムでは,クライアントが分散自動エンコーダをデプロイして,信頼されたサーバによって通信される遅延データ表現の差分プライベート手段を用いて,ローカルデータセットを合成する。
このような拡張は、プライバシを損なうことなく、クライアント間のデータ不均一性の影響を改善する。
深層画像分類タスクに関する実験により、FedDPMSは異種データ設定に特化して設計された最先端のFL法よりも優れていることを示した。
関連論文リスト
- An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
フェデレートラーニング(FL)は、分散データセットからの知識を活用する効果に頼っている。
従来のFLメソッドでは、クライアントが前回のトレーニングラウンドからサーバが集約したグローバルモデルに基づいてローカルモデルを更新するアグリゲート-then-adaptフレームワークを採用している。
我々は,新しいアグリゲーションフリーFLアルゴリズムであるFedAFを紹介する。
論文 参考訳(メタデータ) (2024-04-29T05:55:23Z) - Personalized Federated Learning with Attention-based Client Selection [57.71009302168411]
我々は,意図に基づくクライアント選択機構を備えた新しいPFLアルゴリズムであるFedACSを提案する。
FedACSは、類似したデータ分散を持つクライアント間のコラボレーションを強化するためのアテンションメカニズムを統合している。
CIFAR10とFMNISTの実験は、FedACSの優位性を検証する。
論文 参考訳(メタデータ) (2023-12-23T03:31:46Z) - DCFL: Non-IID awareness Data Condensation aided Federated Learning [0.8158530638728501]
フェデレートラーニング(Federated Learning)とは、特定の量のプライベートデータセットを持つクライアントを活用して、中央サーバがグローバルモデルを反復的にトレーニングする分散学習パラダイムである。
問題は、クライアントサイドのプライベートデータが同一かつ独立して分散されないという事実にある。
本稿では、CKA(Centered Kernel Alignment)法を用いてクライアントをグループに分割し、IID非認識のデータセット凝縮法を用いてクライアントを完全化するDCFLを提案する。
論文 参考訳(メタデータ) (2023-12-21T13:04:24Z) - Federated Learning Empowered by Generative Content [55.576885852501775]
フェデレートラーニング(FL)は、プライバシ保護方法でモデルのトレーニングに分散プライベートデータを活用可能にする。
本稿では,FedGCと呼ばれる新しいFLフレームワークを提案する。
我々は、さまざまなベースライン、データセット、シナリオ、モダリティをカバーする、FedGCに関する体系的な実証的研究を行う。
論文 参考訳(メタデータ) (2023-12-10T07:38:56Z) - PFL-GAN: When Client Heterogeneity Meets Generative Models in
Personalized Federated Learning [55.930403371398114]
パーソナライズドラーニング(PFL)のための新しいGAN(Generative Adversarial Network)の共有と集約戦略を提案する。
PFL-GANは、異なるシナリオにおけるクライアントの不均一性に対処する。より具体的には、まずクライアント間の類似性を学び、次に重み付けされた協調データアグリゲーションを開発する。
いくつかのよく知られたデータセットに対する厳密な実験による実験結果は、PFL-GANの有効性を示している。
論文 参考訳(メタデータ) (2023-08-23T22:38:35Z) - PS-FedGAN: An Efficient Federated Learning Framework Based on Partially
Shared Generative Adversarial Networks For Data Privacy [56.347786940414935]
分散計算のための効果的な学習パラダイムとして、フェデレートラーニング(FL)が登場した。
本研究は,部分的なGANモデル共有のみを必要とする新しいFLフレームワークを提案する。
PS-FedGANと名付けられたこの新しいフレームワークは、異種データ分散に対処するためのGANリリースおよびトレーニングメカニズムを強化する。
論文 参考訳(メタデータ) (2023-05-19T05:39:40Z) - Personalized Privacy-Preserving Framework for Cross-Silo Federated
Learning [0.0]
Federated Learning(FL)は有望な分散ディープラーニング(DL)フレームワークであり、プライベートデータを共有することなく、クライアント間で共同でトレーニングされたDLベースのアプローチを可能にする。
本稿では,PPPFL(Personalized Privacy-Preserving Federated Learning)という新しいフレームワークを提案する。
提案するフレームワークは,MNIST,Fashion-MNIST,CIFAR-10,CIFAR-100など,さまざまなデータセット上で複数のFLベースラインより優れている。
論文 参考訳(メタデータ) (2023-02-22T07:24:08Z) - The Best of Both Worlds: Accurate Global and Personalized Models through
Federated Learning with Data-Free Hyper-Knowledge Distillation [17.570719572024608]
FedHKD (Federated Hyper-Knowledge Distillation) は、クライアントがローカルモデルを訓練するために知識蒸留に依存する新しいFLアルゴリズムである。
他のKDベースのpFLメソッドとは異なり、FedHKDはパブリックデータセットに依存したり、サーバに生成モデルをデプロイしたりしない。
さまざまなシナリオにおける視覚的データセットに関する広範な実験を行い、FedHKDがパーソナライズおよびグローバルモデルパフォーマンスの両方において、大幅な改善を提供することを示した。
論文 参考訳(メタデータ) (2023-01-21T16:20:57Z) - FRAug: Tackling Federated Learning with Non-IID Features via
Representation Augmentation [31.12851987342467]
Federated Learning(FL)は、複数のクライアントが協調してディープラーニングモデルをトレーニングする分散学習パラダイムである。
本稿では,FRAug(Federated Representation Augmentation)を提案する。
当社のアプローチでは,通常は小さなクライアントデータセットを増大させるために,埋め込み空間にクライアント固有の合成サンプルを生成する。
論文 参考訳(メタデータ) (2022-05-30T07:43:42Z) - FedDC: Federated Learning with Non-IID Data via Local Drift Decoupling
and Correction [48.85303253333453]
フェデレートラーニング(FL)は、複数のクライアントがプライベートデータを共有せずに、高性能なグローバルモデルを集合的にトレーニングすることを可能にする。
局所的ドリフトデカップリングと補正(FedDC)を用いた新しいフェデレーション学習アルゴリズムを提案する。
私たちのFedDCでは、ローカルモデルパラメータとグローバルモデルパラメータのギャップを追跡するために、各クライアントが補助的なローカルドリフト変数を使用するような、ローカルトレーニングフェーズにおける軽量な修正のみを導入しています。
実験結果と解析結果から,FedDCは様々な画像分類タスクにおいて,収差の迅速化と性能の向上を図っている。
論文 参考訳(メタデータ) (2022-03-22T14:06:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。