EfficientNeRF: Efficient Neural Radiance Fields
- URL: http://arxiv.org/abs/2206.00878v1
- Date: Thu, 2 Jun 2022 05:36:44 GMT
- Title: EfficientNeRF: Efficient Neural Radiance Fields
- Authors: Tao Hu, Shu Liu, Yilun Chen, Tiancheng Shen, Jiaya Jia
- Abstract summary: We present EfficientNeRF as an efficient NeRF-based method to represent 3D scene and synthesize novel-view images.
Our method can reduce over 88% of training time, reach rendering speed of over 200 FPS, while still achieving competitive accuracy.
- Score: 63.76830521051605
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural Radiance Fields (NeRF) has been wildly applied to various tasks for
its high-quality representation of 3D scenes. It takes long per-scene training
time and per-image testing time. In this paper, we present EfficientNeRF as an
efficient NeRF-based method to represent 3D scene and synthesize novel-view
images. Although several ways exist to accelerate the training or testing
process, it is still difficult to much reduce time for both phases
simultaneously. We analyze the density and weight distribution of the sampled
points then propose valid and pivotal sampling at the coarse and fine stage,
respectively, to significantly improve sampling efficiency. In addition, we
design a novel data structure to cache the whole scene during testing to
accelerate the rendering speed. Overall, our method can reduce over 88\% of
training time, reach rendering speed of over 200 FPS, while still achieving
competitive accuracy. Experiments prove that our method promotes the
practicality of NeRF in the real world and enables many applications.
Related papers
- Efficient NeRF Optimization -- Not All Samples Remain Equally Hard [9.404889815088161]
We propose an application of online hard sample mining for efficient training of Neural Radiance Fields (NeRF)
NeRF models produce state-of-the-art quality for many 3D reconstruction and rendering tasks but require substantial computational resources.
arXiv Detail & Related papers (2024-08-06T13:49:01Z) - ProNeRF: Learning Efficient Projection-Aware Ray Sampling for
Fine-Grained Implicit Neural Radiance Fields [27.008124938806944]
We propose ProNeRF, which provides an optimal trade-off between memory footprint (similar to NeRF), speed (faster than HyperReel), and quality (better than K-Planes)
Our ProNeRF yields state-of-the-art metrics, being 15-23x faster with 0.65dB higher PSNR than NeRF and yielding 0.95dB higher PSNR than the best published sampler-based method, HyperReel.
arXiv Detail & Related papers (2023-12-13T13:37:32Z) - Efficient-3DiM: Learning a Generalizable Single-image Novel-view
Synthesizer in One Day [63.96075838322437]
We propose a framework to learn a single-image novel-view synthesizer.
Our framework is able to reduce the total training time from 10 days to less than 1 day.
arXiv Detail & Related papers (2023-10-04T17:57:07Z) - 3D Gaussian Splatting for Real-Time Radiance Field Rendering [4.320393382724066]
We introduce three key elements that allow us to achieve state-of-the-art visual quality while maintaining competitive training times.
We demonstrate state-of-the-art visual quality and real-time rendering on several established datasets.
arXiv Detail & Related papers (2023-08-08T06:37:06Z) - AligNeRF: High-Fidelity Neural Radiance Fields via Alignment-Aware
Training [100.33713282611448]
We conduct the first pilot study on training NeRF with high-resolution data.
We propose the corresponding solutions, including marrying the multilayer perceptron with convolutional layers.
Our approach is nearly free without introducing obvious training/testing costs.
arXiv Detail & Related papers (2022-11-17T17:22:28Z) - Differentiable Point-Based Radiance Fields for Efficient View Synthesis [57.56579501055479]
We propose a differentiable rendering algorithm for efficient novel view synthesis.
Our method is up to 300x faster than NeRF in both training and inference.
For dynamic scenes, our method trains two orders of magnitude faster than STNeRF and renders at near interactive rate.
arXiv Detail & Related papers (2022-05-28T04:36:13Z) - R2L: Distilling Neural Radiance Field to Neural Light Field for
Efficient Novel View Synthesis [76.07010495581535]
Rendering a single pixel requires querying the Neural Radiance Field network hundreds of times.
NeLF presents a more straightforward representation over NeRF in novel view.
We show the key to successfully learning a deep NeLF network is to have sufficient data.
arXiv Detail & Related papers (2022-03-31T17:57:05Z) - Mega-NeRF: Scalable Construction of Large-Scale NeRFs for Virtual
Fly-Throughs [54.41204057689033]
We explore how to leverage neural fields (NeRFs) to build interactive 3D environments from large-scale visual captures spanning buildings or even multiple city blocks collected primarily from drone data.
In contrast to the single object scenes against which NeRFs have been traditionally evaluated, this setting poses multiple challenges.
We introduce a simple clustering algorithm that partitions training images (or rather pixels) into different NeRF submodules that can be trained in parallel.
arXiv Detail & Related papers (2021-12-20T17:40:48Z) - FastNeRF: High-Fidelity Neural Rendering at 200FPS [17.722927021159393]
We propose FastNeRF, a system capable of rendering high fidelity images at 200Hz on a high-end consumer GPU.
The proposed method is 3000 times faster than the original NeRF algorithm and at least an order of magnitude faster than existing work on accelerating NeRF.
arXiv Detail & Related papers (2021-03-18T17:09:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.