Predicting Physical Object Properties from Video
- URL: http://arxiv.org/abs/2206.00930v1
- Date: Thu, 2 Jun 2022 08:46:22 GMT
- Title: Predicting Physical Object Properties from Video
- Authors: Martin Link, Max Schwarz, Sven Behnke
- Abstract summary: We present a novel approach to estimating physical properties of objects from video.
Our approach consists of a physics engine and a correction estimator.
We demonstrate faster and more robust convergence of the learned method in several simulated 2D scenarios.
- Score: 28.19031441659854
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a novel approach to estimating physical properties of objects from
video. Our approach consists of a physics engine and a correction estimator.
Starting from the initial observed state, object behavior is simulated forward
in time. Based on the simulated and observed behavior, the correction estimator
then determines refined physical parameters for each object. The method can be
iterated for increased precision. Our approach is generic, as it allows for the
use of an arbitrary - not necessarily differentiable - physics engine and
correction estimator. For the latter, we evaluate both gradient-free
hyperparameter optimization and a deep convolutional neural network. We
demonstrate faster and more robust convergence of the learned method in several
simulated 2D scenarios focusing on bin situations.
Related papers
- DeepSimHO: Stable Pose Estimation for Hand-Object Interaction via
Physics Simulation [81.11585774044848]
We present DeepSimHO, a novel deep-learning pipeline that combines forward physics simulation and backward gradient approximation with a neural network.
Our method noticeably improves the stability of the estimation and achieves superior efficiency over test-time optimization.
arXiv Detail & Related papers (2023-10-11T05:34:36Z) - Physion++: Evaluating Physical Scene Understanding that Requires Online
Inference of Different Physical Properties [100.19685489335828]
This work proposes a novel dataset and benchmark, termed Physion++, to rigorously evaluate visual physical prediction in artificial systems.
We test scenarios where accurate prediction relies on estimates of properties such as mass, friction, elasticity, and deformability.
We evaluate the performance of a number of state-of-the-art prediction models that span a variety of levels of learning vs. built-in knowledge, and compare that performance to a set of human predictions.
arXiv Detail & Related papers (2023-06-27T17:59:33Z) - A Bayesian Treatment of Real-to-Sim for Deformable Object Manipulation [59.29922697476789]
We propose a novel methodology for extracting state information from image sequences via a technique to represent the state of a deformable object as a distribution embedding.
Our experiments confirm that we can estimate posterior distributions of physical properties, such as elasticity, friction and scale of highly deformable objects, such as cloth and ropes.
arXiv Detail & Related papers (2021-12-09T17:50:54Z) - Probabilistic Inference of Simulation Parameters via Parallel
Differentiable Simulation [34.30381620584878]
To accurately reproduce measurements from the real world, simulators need to have an adequate model of the physical system.
We address the latter problem of estimating parameters through a Bayesian inference approach.
We leverage GPU code generation and differentiable simulation to evaluate the likelihood and its gradient for many particles in parallel.
arXiv Detail & Related papers (2021-09-18T03:05:44Z) - Scalable Differentiable Physics for Learning and Control [99.4302215142673]
Differentiable physics is a powerful approach to learning and control problems that involve physical objects and environments.
We develop a scalable framework for differentiable physics that can support a large number of objects and their interactions.
arXiv Detail & Related papers (2020-07-04T19:07:51Z) - Identifying Mechanical Models through Differentiable Simulations [16.86640234046472]
This paper proposes a new method for manipulating unknown objects through a sequence of non-prehensile actions.
The proposed method leverages recent progress in differentiable physics models to identify unknown mechanical properties of manipulated objects.
arXiv Detail & Related papers (2020-05-11T20:19:20Z) - Occlusion resistant learning of intuitive physics from videos [52.25308231683798]
Key ability for artificial systems is to understand physical interactions between objects, and predict future outcomes of a situation.
This ability, often referred to as intuitive physics, has recently received attention and several methods were proposed to learn these physical rules from video sequences.
arXiv Detail & Related papers (2020-04-30T19:35:54Z) - Predicting the Physical Dynamics of Unseen 3D Objects [65.49291702488436]
We focus on predicting the dynamics of 3D objects on a plane that have just been subjected to an impulsive force.
Our approach can generalize to object shapes and initial conditions that were unseen during training.
Our model can support training with data from both a physics engine or the real world.
arXiv Detail & Related papers (2020-01-16T06:27:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.