StopNet: Scalable Trajectory and Occupancy Prediction for Urban
Autonomous Driving
- URL: http://arxiv.org/abs/2206.00991v1
- Date: Thu, 2 Jun 2022 11:22:27 GMT
- Title: StopNet: Scalable Trajectory and Occupancy Prediction for Urban
Autonomous Driving
- Authors: Jinkyu Kim, Reza Mahjourian, Scott Ettinger, Mayank Bansal, Brandyn
White, Ben Sapp, Dragomir Anguelov
- Abstract summary: We introduce a motion forecasting (behavior prediction) method that meets the latency requirements for autonomous driving in dense urban environments without sacrificing accuracy.
A whole-scene sparse input representation allows StopNet to scale to predicting trajectories for hundreds of road agents with reliable latency.
In addition to predicting trajectories, our scene encoder lends itself to predicting whole-scene probabilistic occupancy grids.
- Score: 14.281088967734098
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a motion forecasting (behavior prediction) method that meets the
latency requirements for autonomous driving in dense urban environments without
sacrificing accuracy. A whole-scene sparse input representation allows StopNet
to scale to predicting trajectories for hundreds of road agents with reliable
latency. In addition to predicting trajectories, our scene encoder lends itself
to predicting whole-scene probabilistic occupancy grids, a complementary output
representation suitable for busy urban environments. Occupancy grids allow the
AV to reason collectively about the behavior of groups of agents without
processing their individual trajectories. We demonstrate the effectiveness of
our sparse input representation and our model in terms of computation and
accuracy over three datasets. We further show that co-training consistent
trajectory and occupancy predictions improves upon state-of-the-art performance
under standard metrics.
Related papers
- Self-supervised Multi-future Occupancy Forecasting for Autonomous Driving [45.886941596233974]
LiDAR-generated occupancy grid maps (L-OGMs) offer a robust bird's-eye view for the scene representation.
Our proposed framework performs L-OGM prediction in the latent space of a generative architecture.
We decode predictions using either a single-step decoder, which provides high-quality predictions in real-time, or a diffusion-based batch decoder.
arXiv Detail & Related papers (2024-07-30T18:37:59Z) - Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
Urban flow prediction is a nuanced-temporal modeling that estimates the throughput of transportation services like buses, taxis and ride-driven models.
Some recent prediction solutions bring remedies with the notion of physics-guided machine learning (PGML)
We develop a atized physics-guided network (PN), and propose a data-aware framework Physics-guided Active Sample Reweighting (P-GASR)
arXiv Detail & Related papers (2024-07-18T15:44:23Z) - Streaming Motion Forecasting for Autonomous Driving [71.7468645504988]
We introduce a benchmark that queries future trajectories on streaming data and we refer to it as "streaming forecasting"
Our benchmark inherently captures the disappearance and re-appearance of agents, which is a safety-critical problem yet overlooked by snapshot-based benchmarks.
We propose a plug-and-play meta-algorithm called "Predictive Streamer" that can adapt any snapshot-based forecaster into a streaming forecaster.
arXiv Detail & Related papers (2023-10-02T17:13:16Z) - Pre-training on Synthetic Driving Data for Trajectory Prediction [61.520225216107306]
We propose a pipeline-level solution to mitigate the issue of data scarcity in trajectory forecasting.
We adopt HD map augmentation and trajectory synthesis for generating driving data, and then we learn representations by pre-training on them.
We conduct extensive experiments to demonstrate the effectiveness of our data expansion and pre-training strategies.
arXiv Detail & Related papers (2023-09-18T19:49:22Z) - Implicit Occupancy Flow Fields for Perception and Prediction in
Self-Driving [68.95178518732965]
A self-driving vehicle (SDV) must be able to perceive its surroundings and predict the future behavior of other traffic participants.
Existing works either perform object detection followed by trajectory of the detected objects, or predict dense occupancy and flow grids for the whole scene.
This motivates our unified approach to perception and future prediction that implicitly represents occupancy and flow over time with a single neural network.
arXiv Detail & Related papers (2023-08-02T23:39:24Z) - Exploring Attention GAN for Vehicle Motion Prediction [2.887073662645855]
We study the influence of attention in generative models for motion prediction, considering both physical and social context.
We validate our method using the Argoverse Motion Forecasting Benchmark 1.1, achieving competitive unimodal results.
arXiv Detail & Related papers (2022-09-26T13:18:32Z) - Predicting Future Occupancy Grids in Dynamic Environment with
Spatio-Temporal Learning [63.25627328308978]
We propose a-temporal prediction network pipeline to generate future occupancy predictions.
Compared to current SOTA, our approach predicts occupancy for a longer horizon of 3 seconds.
We publicly release our grid occupancy dataset based on nulis to support further research.
arXiv Detail & Related papers (2022-05-06T13:45:32Z) - Attentional-GCNN: Adaptive Pedestrian Trajectory Prediction towards
Generic Autonomous Vehicle Use Cases [10.41902340952981]
We propose a novel Graph Convolutional Neural Network (GCNN)-based approach, Attentional-GCNN, which aggregates information of implicit interaction between pedestrians in a crowd by assigning attention weight in edges of the graph.
We show our proposed method achieves an improvement over the state of art by 10% Average Displacement Error (ADE) and 12% Final Displacement Error (FDE) with fast inference speeds.
arXiv Detail & Related papers (2020-11-23T03:13:26Z) - Implicit Latent Variable Model for Scene-Consistent Motion Forecasting [78.74510891099395]
In this paper, we aim to learn scene-consistent motion forecasts of complex urban traffic directly from sensor data.
We model the scene as an interaction graph and employ powerful graph neural networks to learn a distributed latent representation of the scene.
arXiv Detail & Related papers (2020-07-23T14:31:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.