Improving Consistency in Vehicle Trajectory Prediction Through Preference Optimization
- URL: http://arxiv.org/abs/2507.02406v1
- Date: Thu, 03 Jul 2025 07:59:49 GMT
- Title: Improving Consistency in Vehicle Trajectory Prediction Through Preference Optimization
- Authors: Caio Azevedo, Lina Achaji, Stefano Sabatini, Nicola Poerio, Grzegorz Bartyzel, Sascha Hornauer, Fabien Moutarde,
- Abstract summary: Trajectory prediction is an essential step in the pipeline of an autonomous vehicle.<n>Current deep-learning-based trajectory prediction models can achieve excellent accuracy on public datasets.<n>This work fine-tunes trajectory prediction models in multi-agent settings using preference optimization.
- Score: 4.506411269983418
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Trajectory prediction is an essential step in the pipeline of an autonomous vehicle. Inaccurate or inconsistent predictions regarding the movement of agents in its surroundings lead to poorly planned maneuvers and potentially dangerous situations for the end-user. Current state-of-the-art deep-learning-based trajectory prediction models can achieve excellent accuracy on public datasets. However, when used in more complex, interactive scenarios, they often fail to capture important interdependencies between agents, leading to inconsistent predictions among agents in the traffic scene. Inspired by the efficacy of incorporating human preference into large language models, this work fine-tunes trajectory prediction models in multi-agent settings using preference optimization. By taking as input automatically calculated preference rankings among predicted futures in the fine-tuning process, our experiments--using state-of-the-art models on three separate datasets--show that we are able to significantly improve scene consistency while minimally sacrificing trajectory prediction accuracy and without adding any excess computational requirements at inference time.
Related papers
- From Marginal to Joint Predictions: Evaluating Scene-Consistent Trajectory Prediction Approaches for Automated Driving [4.795092023802721]
Marginal prediction models commonly forecast each agent's future trajectories independently.<n>Joint prediction models explicitly account for the interactions between agents, yielding socially and physically consistent predictions.<n>We evaluate each approach in terms of prediction accuracy, multi-modality, and inference efficiency.
arXiv Detail & Related papers (2025-07-07T17:58:53Z) - ITPNet: Towards Instantaneous Trajectory Prediction for Autonomous Driving [46.17683799762322]
Trajectory prediction of agents is crucial for the safety of autonomous vehicles.<n>Previous approaches usually rely on sufficiently long-observed trajectory to predict the future trajectory of the agents.<n>We propose a general and plug-and-play instantaneous trajectory prediction approach, called ITPNet.
arXiv Detail & Related papers (2024-12-10T10:09:41Z) - OPUS: Occupancy Prediction Using a Sparse Set [64.60854562502523]
We present a framework to simultaneously predict occupied locations and classes using a set of learnable queries.
OPUS incorporates a suite of non-trivial strategies to enhance model performance.
Our lightest model achieves superior RayIoU on the Occ3D-nuScenes dataset at near 2x FPS, while our heaviest model surpasses previous best results by 6.1 RayIoU.
arXiv Detail & Related papers (2024-09-14T07:44:22Z) - JRDB-Traj: A Dataset and Benchmark for Trajectory Forecasting in Crowds [79.00975648564483]
Trajectory forecasting models, employed in fields such as robotics, autonomous vehicles, and navigation, face challenges in real-world scenarios.
This dataset provides comprehensive data, including the locations of all agents, scene images, and point clouds, all from the robot's perspective.
The objective is to predict the future positions of agents relative to the robot using raw sensory input data.
arXiv Detail & Related papers (2023-11-05T18:59:31Z) - AdvDO: Realistic Adversarial Attacks for Trajectory Prediction [87.96767885419423]
Trajectory prediction is essential for autonomous vehicles to plan correct and safe driving behaviors.
We devise an optimization-based adversarial attack framework to generate realistic adversarial trajectories.
Our attack can lead an AV to drive off road or collide into other vehicles in simulation.
arXiv Detail & Related papers (2022-09-19T03:34:59Z) - SGCN:Sparse Graph Convolution Network for Pedestrian Trajectory
Prediction [64.16212996247943]
We present a Sparse Graph Convolution Network(SGCN) for pedestrian trajectory prediction.
Specifically, the SGCN explicitly models the sparse directed interaction with a sparse directed spatial graph to capture adaptive interaction pedestrians.
visualizations indicate that our method can capture adaptive interactions between pedestrians and their effective motion tendencies.
arXiv Detail & Related papers (2021-04-04T03:17:42Z) - Spatio-Temporal Graph Dual-Attention Network for Multi-Agent Prediction
and Tracking [23.608125748229174]
We propose a generic generative neural system for multi-agent trajectory prediction involving heterogeneous agents.
The proposed system is evaluated on three public benchmark datasets for trajectory prediction.
arXiv Detail & Related papers (2021-02-18T02:25:35Z) - Attentional-GCNN: Adaptive Pedestrian Trajectory Prediction towards
Generic Autonomous Vehicle Use Cases [10.41902340952981]
We propose a novel Graph Convolutional Neural Network (GCNN)-based approach, Attentional-GCNN, which aggregates information of implicit interaction between pedestrians in a crowd by assigning attention weight in edges of the graph.
We show our proposed method achieves an improvement over the state of art by 10% Average Displacement Error (ADE) and 12% Final Displacement Error (FDE) with fast inference speeds.
arXiv Detail & Related papers (2020-11-23T03:13:26Z) - AutoCP: Automated Pipelines for Accurate Prediction Intervals [84.16181066107984]
This paper proposes an AutoML framework called Automatic Machine Learning for Conformal Prediction (AutoCP)
Unlike the familiar AutoML frameworks that attempt to select the best prediction model, AutoCP constructs prediction intervals that achieve the user-specified target coverage rate.
We tested AutoCP on a variety of datasets and found that it significantly outperforms benchmark algorithms.
arXiv Detail & Related papers (2020-06-24T23:13:11Z) - The Importance of Prior Knowledge in Precise Multimodal Prediction [71.74884391209955]
Roads have well defined geometries, topologies, and traffic rules.
In this paper we propose to incorporate structured priors as a loss function.
We demonstrate the effectiveness of our approach on real-world self-driving datasets.
arXiv Detail & Related papers (2020-06-04T03:56:11Z) - Long-Short Term Spatiotemporal Tensor Prediction for Passenger Flow
Profile [15.875569404476495]
We focus on a tensor-based prediction and propose several practical techniques to improve prediction.
For long-term prediction specifically, we propose the "Tensor Decomposition + 2-Dimensional Auto-Regressive Moving Average (2D-ARMA)" model.
For short-term prediction, we propose to conduct tensor completion based on tensor clustering to avoid oversimplifying and ensure accuracy.
arXiv Detail & Related papers (2020-04-23T08:30:00Z) - Social-WaGDAT: Interaction-aware Trajectory Prediction via Wasserstein
Graph Double-Attention Network [29.289670231364788]
In this paper, we propose a generic generative neural system for multi-agent trajectory prediction.
We also employ an efficient kinematic constraint layer applied to vehicle trajectory prediction.
The proposed system is evaluated on three public benchmark datasets for trajectory prediction.
arXiv Detail & Related papers (2020-02-14T20:11:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.