FV-UPatches: Enhancing Universality in Finger Vein Recognition
- URL: http://arxiv.org/abs/2206.01061v1
- Date: Thu, 2 Jun 2022 14:20:22 GMT
- Title: FV-UPatches: Enhancing Universality in Finger Vein Recognition
- Authors: Ziyan Chen, Jiazhen Liu, Changwen Cao, Changlong Jin and Hakil Kim
- Abstract summary: We propose a universal learning-based framework, which achieves generalization while training with limited data.
The proposed framework shows application potential in other vein-based biometric recognition as well.
- Score: 0.6299766708197883
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Many deep learning-based models have been introduced in finger vein
recognition in recent years. These solutions, however, suffer from data
dependency and are difficult to achieve model generalization. To address this
problem, we are inspired by the idea of domain adaptation and propose a
universal learning-based framework, which achieves generalization while
training with limited data. To reduce differences between data distributions, a
compressed U-Net is introduced as a domain mapper to map the raw region of
interest image onto a target domain. The concentrated target domain is a
unified feature space for the subsequent matching, in which a local descriptor
model SOSNet is employed to embed patches into descriptors measuring the
similarity of matching pairs. In the proposed framework, the domain mapper is
an approximation to a specific extraction function thus the training is only a
one-time effort with limited data. Moreover, the local descriptor model can be
trained to be representative enough based on a public dataset of
non-finger-vein images. The whole pipeline enables the framework to be well
generalized, making it possible to enhance universality and helps to reduce
costs of data collection, tuning and retraining. The comparable experimental
results to state-of-the-art (SOTA) performance in five public datasets prove
the effectiveness of the proposed framework. Furthermore, the framework shows
application potential in other vein-based biometric recognition as well.
Related papers
- FedSIS: Federated Split Learning with Intermediate Representation
Sampling for Privacy-preserving Generalized Face Presentation Attack
Detection [4.1897081000881045]
Lack of generalization to unseen domains/attacks is the Achilles heel of most face presentation attack detection (FacePAD) algorithms.
In this work, a novel framework called Federated Split learning with Intermediate representation Sampling (FedSIS) is introduced for privacy-preserving domain generalization.
arXiv Detail & Related papers (2023-08-20T11:49:12Z) - Unifying and Personalizing Weakly-supervised Federated Medical Image
Segmentation via Adaptive Representation and Aggregation [1.121358474059223]
Federated learning (FL) enables multiple sites to collaboratively train powerful deep models without compromising data privacy and security.
Weakly supervised segmentation, which uses sparsely-grained supervision, is increasingly being paid attention to due to its great potential of reducing annotation costs.
We propose a novel personalized FL framework for medical image segmentation, named FedICRA, which uniformly leverages heterogeneous weak supervision.
arXiv Detail & Related papers (2023-04-12T06:32:08Z) - GPGait: Generalized Pose-based Gait Recognition [11.316545213493223]
Recent works on pose-based gait recognition have demonstrated the potential of using such simple information to achieve results comparable to silhouette-based methods.
To improve the generalization ability of pose-based methods across datasets, we propose a textbfGeneralized textbfPose-based textbfGait recognition framework.
arXiv Detail & Related papers (2023-03-09T13:17:13Z) - Adaptive Local-Component-aware Graph Convolutional Network for One-shot
Skeleton-based Action Recognition [54.23513799338309]
We present an Adaptive Local-Component-aware Graph Convolutional Network for skeleton-based action recognition.
Our method provides a stronger representation than the global embedding and helps our model reach state-of-the-art.
arXiv Detail & Related papers (2022-09-21T02:33:07Z) - Domain Generalization for Activity Recognition via Adaptive Feature
Fusion [9.458837222079612]
We propose emphAdaptive Feature Fusion for Activity Recognition(AFFAR).
AFFAR learns to fuse the domain-invariant and domain-specific representations to improve the model's generalization performance.
We apply AFAR to a real application, i.e., the diagnosis of Children's Attention Deficit Hyperactivity Disorder(ADHD)
arXiv Detail & Related papers (2022-07-21T02:14:09Z) - Deep face recognition with clustering based domain adaptation [57.29464116557734]
We propose a new clustering-based domain adaptation method designed for face recognition task in which the source and target domain do not share any classes.
Our method effectively learns the discriminative target feature by aligning the feature domain globally, and, at the meantime, distinguishing the target clusters locally.
arXiv Detail & Related papers (2022-05-27T12:29:11Z) - Federated and Generalized Person Re-identification through Domain and
Feature Hallucinating [88.77196261300699]
We study the problem of federated domain generalization (FedDG) for person re-identification (re-ID)
We propose a novel method, called "Domain and Feature Hallucinating (DFH)", to produce diverse features for learning generalized local and global models.
Our method achieves the state-of-the-art performance for FedDG on four large-scale re-ID benchmarks.
arXiv Detail & Related papers (2022-03-05T09:15:13Z) - VisDA-2021 Competition Universal Domain Adaptation to Improve
Performance on Out-of-Distribution Data [64.91713686654805]
The Visual Domain Adaptation (VisDA) 2021 competition tests models' ability to adapt to novel test distributions.
We will evaluate adaptation to novel viewpoints, backgrounds, modalities and degradation in quality.
Performance will be measured using a rigorous protocol, comparing to state-of-the-art domain adaptation methods.
arXiv Detail & Related papers (2021-07-23T03:21:51Z) - Cross-Domain Facial Expression Recognition: A Unified Evaluation
Benchmark and Adversarial Graph Learning [85.6386289476598]
We develop a novel adversarial graph representation adaptation (AGRA) framework for cross-domain holistic-local feature co-adaptation.
We conduct extensive and fair evaluations on several popular benchmarks and show that the proposed AGRA framework outperforms previous state-of-the-art methods.
arXiv Detail & Related papers (2020-08-03T15:00:31Z) - Unsupervised Intra-domain Adaptation for Semantic Segmentation through
Self-Supervision [73.76277367528657]
Convolutional neural network-based approaches have achieved remarkable progress in semantic segmentation.
To cope with this limitation, automatically annotated data generated from graphic engines are used to train segmentation models.
We propose a two-step self-supervised domain adaptation approach to minimize the inter-domain and intra-domain gap together.
arXiv Detail & Related papers (2020-04-16T15:24:11Z) - Learning Cross-domain Generalizable Features by Representation
Disentanglement [11.74643883335152]
Deep learning models exhibit limited generalizability across different domains.
We propose Mutual-Information-based Disentangled Neural Networks (MIDNet) to extract generalizable features that enable transferring knowledge to unseen categorical features in target domains.
We demonstrate our method on handwritten digits datasets and a fetal ultrasound dataset for image classification tasks.
arXiv Detail & Related papers (2020-02-29T17:53:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.