Weakly Supervised Representation Learning with Sparse Perturbations
- URL: http://arxiv.org/abs/2206.01101v1
- Date: Thu, 2 Jun 2022 15:30:07 GMT
- Title: Weakly Supervised Representation Learning with Sparse Perturbations
- Authors: Kartik Ahuja, Jason Hartford, Yoshua Bengio
- Abstract summary: We show that if one has weak supervision from observations generated by sparse perturbations of the latent variables, identification is achievable under unknown continuous latent distributions.
We propose a natural estimation procedure based on this theory and illustrate it on low-dimensional synthetic and image-based experiments.
- Score: 82.39171485023276
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The theory of representation learning aims to build methods that provably
invert the data generating process with minimal domain knowledge or any source
of supervision. Most prior approaches require strong distributional assumptions
on the latent variables and weak supervision (auxiliary information such as
timestamps) to provide provable identification guarantees. In this work, we
show that if one has weak supervision from observations generated by sparse
perturbations of the latent variables--e.g. images in a reinforcement learning
environment where actions move individual sprites--identification is achievable
under unknown continuous latent distributions. We show that if the
perturbations are applied only on mutually exclusive blocks of latents, we
identify the latents up to those blocks. We also show that if these
perturbation blocks overlap, we identify latents up to the smallest blocks
shared across perturbations. Consequently, if there are blocks that intersect
in one latent variable only, then such latents are identified up to permutation
and scaling. We propose a natural estimation procedure based on this theory and
illustrate it on low-dimensional synthetic and image-based experiments.
Related papers
- Learning Discrete Latent Variable Structures with Tensor Rank Conditions [30.292492090200984]
Unobserved discrete data are ubiquitous in many scientific disciplines, and how to learn the causal structure of these latent variables is crucial for uncovering data patterns.
Most studies focus on the linear latent variable model or impose strict constraints on latent structures, which fail to address cases in discrete data involving non-linear relationships or complex latent structures.
We explore a tensor rank condition on contingency tables for an observed variable set $mathbfX_p$, showing that the rank is determined by the minimum support of a specific conditional set.
One can locate the latent variable through probing the rank on different observed variables
arXiv Detail & Related papers (2024-06-11T07:25:17Z) - On the Identification of Temporally Causal Representation with Instantaneous Dependence [50.14432597910128]
Temporally causal representation learning aims to identify the latent causal process from time series observations.
Most methods require the assumption that the latent causal processes do not have instantaneous relations.
We propose an textbfIDentification framework for instantanetextbfOus textbfLatent dynamics.
arXiv Detail & Related papers (2024-05-24T08:08:05Z) - Nonparametric Partial Disentanglement via Mechanism Sparsity: Sparse
Actions, Interventions and Sparse Temporal Dependencies [58.179981892921056]
This work introduces a novel principle for disentanglement we call mechanism sparsity regularization.
We propose a representation learning method that induces disentanglement by simultaneously learning the latent factors.
We show that the latent factors can be recovered by regularizing the learned causal graph to be sparse.
arXiv Detail & Related papers (2024-01-10T02:38:21Z) - Stochastic Vision Transformers with Wasserstein Distance-Aware Attention [8.407731308079025]
Self-supervised learning is one of the most promising approaches to acquiring knowledge from limited labeled data.
We introduce a new vision transformer that integrates uncertainty and distance awareness into self-supervised learning pipelines.
Our proposed method achieves superior accuracy and calibration, surpassing the self-supervised baseline in a wide range of experiments on a variety of datasets.
arXiv Detail & Related papers (2023-11-30T15:53:37Z) - Learning Sparse Latent Representations for Generator Model [7.467412443287767]
We present a new unsupervised learning method to enforce sparsity on the latent space for the generator model.
Our model consists of only one top-down generator network that maps the latent variable to the observed data.
arXiv Detail & Related papers (2022-09-20T18:58:24Z) - Learning Conditional Invariance through Cycle Consistency [60.85059977904014]
We propose a novel approach to identify meaningful and independent factors of variation in a dataset.
Our method involves two separate latent subspaces for the target property and the remaining input information.
We demonstrate on synthetic and molecular data that our approach identifies more meaningful factors which lead to sparser and more interpretable models.
arXiv Detail & Related papers (2021-11-25T17:33:12Z) - Where and What? Examining Interpretable Disentangled Representations [96.32813624341833]
Capturing interpretable variations has long been one of the goals in disentanglement learning.
Unlike the independence assumption, interpretability has rarely been exploited to encourage disentanglement in the unsupervised setting.
In this paper, we examine the interpretability of disentangled representations by investigating two questions: where to be interpreted and what to be interpreted.
arXiv Detail & Related papers (2021-04-07T11:22:02Z) - Learning Disentangled Representations with Latent Variation
Predictability [102.4163768995288]
This paper defines the variation predictability of latent disentangled representations.
Within an adversarial generation process, we encourage variation predictability by maximizing the mutual information between latent variations and corresponding image pairs.
We develop an evaluation metric that does not rely on the ground-truth generative factors to measure the disentanglement of latent representations.
arXiv Detail & Related papers (2020-07-25T08:54:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.