Learning Sparse Latent Representations for Generator Model
- URL: http://arxiv.org/abs/2209.09949v1
- Date: Tue, 20 Sep 2022 18:58:24 GMT
- Title: Learning Sparse Latent Representations for Generator Model
- Authors: Hanao Li, Tian Han
- Abstract summary: We present a new unsupervised learning method to enforce sparsity on the latent space for the generator model.
Our model consists of only one top-down generator network that maps the latent variable to the observed data.
- Score: 7.467412443287767
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sparsity is a desirable attribute. It can lead to more efficient and more
effective representations compared to the dense model. Meanwhile, learning
sparse latent representations has been a challenging problem in the field of
computer vision and machine learning due to its complexity. In this paper, we
present a new unsupervised learning method to enforce sparsity on the latent
space for the generator model with a gradually sparsified spike and slab
distribution as our prior. Our model consists of only one top-down generator
network that maps the latent variable to the observed data. Latent variables
can be inferred following generator posterior direction using non-persistent
gradient based method. Spike and Slab regularization in the inference step can
push non-informative latent dimensions towards zero to induce sparsity.
Extensive experiments show the model can preserve majority of the information
from original images with sparse representations while demonstrating improved
results compared to other existing methods. We observe that our model can learn
disentangled semantics and increase explainability of the latent codes while
boosting the robustness in the task of classification and denoising.
Related papers
- Heat Death of Generative Models in Closed-Loop Learning [63.83608300361159]
We study the learning dynamics of generative models that are fed back their own produced content in addition to their original training dataset.
We show that, unless a sufficient amount of external data is introduced at each iteration, any non-trivial temperature leads the model to degenerate.
arXiv Detail & Related papers (2024-04-02T21:51:39Z) - Learning to Jump: Thinning and Thickening Latent Counts for Generative
Modeling [69.60713300418467]
Learning to jump is a general recipe for generative modeling of various types of data.
We demonstrate when learning to jump is expected to perform comparably to learning to denoise, and when it is expected to perform better.
arXiv Detail & Related papers (2023-05-28T05:38:28Z) - ChiroDiff: Modelling chirographic data with Diffusion Models [132.5223191478268]
We introduce a powerful model-class namely "Denoising Diffusion Probabilistic Models" or DDPMs for chirographic data.
Our model named "ChiroDiff", being non-autoregressive, learns to capture holistic concepts and therefore remains resilient to higher temporal sampling rate.
arXiv Detail & Related papers (2023-04-07T15:17:48Z) - Learning Sparsity of Representations with Discrete Latent Variables [15.05207849434673]
We propose a sparse deep latent generative model SDLGM to explicitly model degree of sparsity.
The resulting sparsity of a representation is not fixed, but fits to the observation itself under the pre-defined restriction.
For inference and learning, we develop an amortized variational method based on MC gradient estimator.
arXiv Detail & Related papers (2023-04-03T12:47:18Z) - Attribute Graphs Underlying Molecular Generative Models: Path to Learning with Limited Data [42.517927809224275]
We provide an algorithm that relies on perturbation experiments on latent codes of a pre-trained generative autoencoder to uncover an attribute graph.
We show that one can fit an effective graphical model that models a structural equation model between latent codes.
Using a pre-trained generative autoencoder trained on a large dataset of small molecules, we demonstrate that the graphical model can be used to predict a specific property.
arXiv Detail & Related papers (2022-07-14T19:20:30Z) - Entropy optimized semi-supervised decomposed vector-quantized
variational autoencoder model based on transfer learning for multiclass text
classification and generation [3.9318191265352196]
We propose a semisupervised discrete latent variable model for multi-class text classification and text generation.
The proposed model employs the concept of transfer learning for training a quantized transformer model.
Experimental results indicate that the proposed model has surpassed the state-of-the-art models remarkably.
arXiv Detail & Related papers (2021-11-10T07:07:54Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
Current autoencoder-based disentangled representation learning methods achieve disentanglement by penalizing the ( aggregate) posterior to encourage statistical independence of the latent factors.
We present a novel multi-stage modeling approach where the disentangled factors are first learned using a penalty-based disentangled representation learning method.
Then, the low-quality reconstruction is improved with another deep generative model that is trained to model the missing correlated latent variables.
arXiv Detail & Related papers (2020-10-25T18:51:15Z) - Unsupervised Controllable Generation with Self-Training [90.04287577605723]
controllable generation with GANs remains a challenging research problem.
We propose an unsupervised framework to learn a distribution of latent codes that control the generator through self-training.
Our framework exhibits better disentanglement compared to other variants such as the variational autoencoder.
arXiv Detail & Related papers (2020-07-17T21:50:35Z) - High-Fidelity Synthesis with Disentangled Representation [60.19657080953252]
We propose an Information-Distillation Generative Adrial Network (ID-GAN) for disentanglement learning and high-fidelity synthesis.
Our method learns disentangled representation using VAE-based models, and distills the learned representation with an additional nuisance variable to the separate GAN-based generator for high-fidelity synthesis.
Despite the simplicity, we show that the proposed method is highly effective, achieving comparable image generation quality to the state-of-the-art methods using the disentangled representation.
arXiv Detail & Related papers (2020-01-13T14:39:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.