Compressive Fourier collocation methods for high-dimensional diffusion
equations with periodic boundary conditions
- URL: http://arxiv.org/abs/2206.01255v5
- Date: Tue, 21 Nov 2023 18:31:13 GMT
- Title: Compressive Fourier collocation methods for high-dimensional diffusion
equations with periodic boundary conditions
- Authors: Weiqi Wang and Simone Brugiapaglia
- Abstract summary: High-dimensional Partial Differential Equations (PDEs) are a popular mathematical modelling tool, with applications ranging from finance to computational chemistry.
Standard numerical techniques for solving these PDEs are typically affected by the curse of dimensionality.
Inspired by recent progress in sparse function approximation in high dimensions, we propose a new method called compressive Fourier collocation.
- Score: 7.80387197350208
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: High-dimensional Partial Differential Equations (PDEs) are a popular
mathematical modelling tool, with applications ranging from finance to
computational chemistry. However, standard numerical techniques for solving
these PDEs are typically affected by the curse of dimensionality. In this work,
we tackle this challenge while focusing on stationary diffusion equations
defined over a high-dimensional domain with periodic boundary conditions.
Inspired by recent progress in sparse function approximation in high
dimensions, we propose a new method called compressive Fourier collocation.
Combining ideas from compressive sensing and spectral collocation, our method
replaces the use of structured collocation grids with Monte Carlo sampling and
employs sparse recovery techniques, such as orthogonal matching pursuit and
$\ell^1$ minimization, to approximate the Fourier coefficients of the PDE
solution. We conduct a rigorous theoretical analysis showing that the
approximation error of the proposed method is comparable with the best $s$-term
approximation (with respect to the Fourier basis) to the solution. Using the
recently introduced framework of random sampling in bounded Riesz systems, our
analysis shows that the compressive Fourier collocation method mitigates the
curse of dimensionality with respect to the number of collocation points under
sufficient conditions on the regularity of the diffusion coefficient. We also
present numerical experiments that illustrate the accuracy and stability of the
method for the approximation of sparse and compressible solutions.
Related papers
- Non-Convex Stochastic Composite Optimization with Polyak Momentum [25.060477077577154]
The generalization proximal gradient is a powerful generalization of the widely used gradient descent (SGD) method.
However, it is notoriously known that method fails to converge in numerous applications in Machine.
arXiv Detail & Related papers (2024-03-05T13:43:58Z) - Spectral operator learning for parametric PDEs without data reliance [6.7083321695379885]
We introduce a novel operator learning-based approach for solving parametric partial differential equations (PDEs) without the need for data harnessing.
The proposed framework demonstrates superior performance compared to existing scientific machine learning techniques.
arXiv Detail & Related papers (2023-10-03T12:37:15Z) - Sampling with Mollified Interaction Energy Descent [57.00583139477843]
We present a new optimization-based method for sampling called mollified interaction energy descent (MIED)
MIED minimizes a new class of energies on probability measures called mollified interaction energies (MIEs)
We show experimentally that for unconstrained sampling problems our algorithm performs on par with existing particle-based algorithms like SVGD.
arXiv Detail & Related papers (2022-10-24T16:54:18Z) - A blob method method for inhomogeneous diffusion with applications to
multi-agent control and sampling [0.6562256987706128]
We develop a deterministic particle method for the weighted porous medium equation (WPME) and prove its convergence on bounded time intervals.
Our method has natural applications to multi-agent coverage algorithms and sampling probability measures.
arXiv Detail & Related papers (2022-02-25T19:49:05Z) - An application of the splitting-up method for the computation of a
neural network representation for the solution for the filtering equations [68.8204255655161]
Filtering equations play a central role in many real-life applications, including numerical weather prediction, finance and engineering.
One of the classical approaches to approximate the solution of the filtering equations is to use a PDE inspired method, called the splitting-up method.
We combine this method with a neural network representation to produce an approximation of the unnormalised conditional distribution of the signal process.
arXiv Detail & Related papers (2022-01-10T11:01:36Z) - Mean-Square Analysis with An Application to Optimal Dimension Dependence
of Langevin Monte Carlo [60.785586069299356]
This work provides a general framework for the non-asymotic analysis of sampling error in 2-Wasserstein distance.
Our theoretical analysis is further validated by numerical experiments.
arXiv Detail & Related papers (2021-09-08T18:00:05Z) - Scalable Variational Gaussian Processes via Harmonic Kernel
Decomposition [54.07797071198249]
We introduce a new scalable variational Gaussian process approximation which provides a high fidelity approximation while retaining general applicability.
We demonstrate that, on a range of regression and classification problems, our approach can exploit input space symmetries such as translations and reflections.
Notably, our approach achieves state-of-the-art results on CIFAR-10 among pure GP models.
arXiv Detail & Related papers (2021-06-10T18:17:57Z) - Optimal oracle inequalities for solving projected fixed-point equations [53.31620399640334]
We study methods that use a collection of random observations to compute approximate solutions by searching over a known low-dimensional subspace of the Hilbert space.
We show how our results precisely characterize the error of a class of temporal difference learning methods for the policy evaluation problem with linear function approximation.
arXiv Detail & Related papers (2020-12-09T20:19:32Z) - SLEIPNIR: Deterministic and Provably Accurate Feature Expansion for
Gaussian Process Regression with Derivatives [86.01677297601624]
We propose a novel approach for scaling GP regression with derivatives based on quadrature Fourier features.
We prove deterministic, non-asymptotic and exponentially fast decaying error bounds which apply for both the approximated kernel as well as the approximated posterior.
arXiv Detail & Related papers (2020-03-05T14:33:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.