Fair Classification via Transformer Neural Networks: Case Study of an
Educational Domain
- URL: http://arxiv.org/abs/2206.01410v1
- Date: Fri, 3 Jun 2022 06:34:16 GMT
- Title: Fair Classification via Transformer Neural Networks: Case Study of an
Educational Domain
- Authors: Modar Sulaiman, Kallol Roy
- Abstract summary: This paper presents a preliminary investigation of fairness constraint in transformer networks on Law School Student neural datasets.
We have employed fairness metrics for evaluation and check the trade-off between fairness and accuracy.
- Score: 0.0913755431537592
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Educational technologies nowadays increasingly use data and Machine Learning
(ML) models. This gives the students, instructors, and administrators support
and insights for the optimum policy. However, it is well acknowledged that ML
models are subject to bias, which raises concern about the fairness, bias, and
discrimination of using these automated ML algorithms in education and its
unintended and unforeseen negative consequences. The contribution of bias
during the decision-making comes from datasets used for training ML models and
the model architecture. This paper presents a preliminary investigation of
fairness constraint in transformer neural networks on Law School and
Student-Mathematics datasets. The used transformer models transform these raw
datasets into a richer representation space of natural language processing
(NLP) while solving fairness classification. We have employed fairness metrics
for evaluation and check the trade-off between fairness and accuracy. We have
reported the various metrics of F1, SPD, EOD, and accuracy for different
architectures from the transformer model class.
Related papers
- Classes Are Not Equal: An Empirical Study on Image Recognition Fairness [100.36114135663836]
We experimentally demonstrate that classes are not equal and the fairness issue is prevalent for image classification models across various datasets.
Our findings reveal that models tend to exhibit greater prediction biases for classes that are more challenging to recognize.
Data augmentation and representation learning algorithms improve overall performance by promoting fairness to some degree in image classification.
arXiv Detail & Related papers (2024-02-28T07:54:50Z) - FairLay-ML: Intuitive Remedies for Unfairness in Data-Driven
Social-Critical Algorithms [13.649336187121095]
This thesis explores whether open-sourced machine learning (ML) model explanation tools can allow a layman to visualize, understand, and suggest intuitive remedies to unfairness in ML-based decision-support systems.
This thesis presents FairLay-ML, a proof-of-concept GUI integrating some of the most promising tools to provide intuitive explanations for unfair logic in ML models.
arXiv Detail & Related papers (2023-07-11T06:05:06Z) - Non-Invasive Fairness in Learning through the Lens of Data Drift [88.37640805363317]
We show how to improve the fairness of Machine Learning models without altering the data or the learning algorithm.
We use a simple but key insight: the divergence of trends between different populations, and, consecutively, between a learned model and minority populations, is analogous to data drift.
We explore two strategies (model-splitting and reweighing) to resolve this drift, aiming to improve the overall conformance of models to the underlying data.
arXiv Detail & Related papers (2023-03-30T17:30:42Z) - Fairness and Accuracy under Domain Generalization [10.661409428935494]
Concerns have arisen that machine learning algorithms may be biased against certain social groups.
Many approaches have been proposed to make ML models fair, but they typically rely on the assumption that data distributions in training and deployment are identical.
We study the transfer of both fairness and accuracy under domain generalization where the data at test time may be sampled from never-before-seen domains.
arXiv Detail & Related papers (2023-01-30T23:10:17Z) - Fairness Reprogramming [42.65700878967251]
We propose a new generic fairness learning paradigm, called FairReprogram, which incorporates the model reprogramming technique.
Specifically, FairReprogram considers the case where models can not be changed and appends to the input a set of perturbations, called the fairness trigger.
We show both theoretically and empirically that the fairness trigger can effectively obscure demographic biases in the output prediction of fixed ML models.
arXiv Detail & Related papers (2022-09-21T09:37:00Z) - Fair Interpretable Representation Learning with Correction Vectors [60.0806628713968]
We propose a new framework for fair representation learning that is centered around the learning of "correction vectors"
We show experimentally that several fair representation learning models constrained in such a way do not exhibit losses in ranking or classification performance.
arXiv Detail & Related papers (2022-02-07T11:19:23Z) - FairIF: Boosting Fairness in Deep Learning via Influence Functions with
Validation Set Sensitive Attributes [51.02407217197623]
We propose a two-stage training algorithm named FAIRIF.
It minimizes the loss over the reweighted data set where the sample weights are computed.
We show that FAIRIF yields models with better fairness-utility trade-offs against various types of bias.
arXiv Detail & Related papers (2022-01-15T05:14:48Z) - Fairness in Semi-supervised Learning: Unlabeled Data Help to Reduce
Discrimination [53.3082498402884]
A growing specter in the rise of machine learning is whether the decisions made by machine learning models are fair.
We present a framework of fair semi-supervised learning in the pre-processing phase, including pseudo labeling to predict labels for unlabeled data.
A theoretical decomposition analysis of bias, variance and noise highlights the different sources of discrimination and the impact they have on fairness in semi-supervised learning.
arXiv Detail & Related papers (2020-09-25T05:48:56Z) - Transfer Learning without Knowing: Reprogramming Black-box Machine
Learning Models with Scarce Data and Limited Resources [78.72922528736011]
We propose a novel approach, black-box adversarial reprogramming (BAR), that repurposes a well-trained black-box machine learning model.
Using zeroth order optimization and multi-label mapping techniques, BAR can reprogram a black-box ML model solely based on its input-output responses.
BAR outperforms state-of-the-art methods and yields comparable performance to the vanilla adversarial reprogramming method.
arXiv Detail & Related papers (2020-07-17T01:52:34Z) - Do the Machine Learning Models on a Crowd Sourced Platform Exhibit Bias?
An Empirical Study on Model Fairness [7.673007415383724]
We have created a benchmark of 40 top-rated models from Kaggle used for 5 different tasks.
We have applied 7 mitigation techniques on these models and analyzed the fairness, mitigation results, and impacts on performance.
arXiv Detail & Related papers (2020-05-21T23:35:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.