FairIF: Boosting Fairness in Deep Learning via Influence Functions with
Validation Set Sensitive Attributes
- URL: http://arxiv.org/abs/2201.05759v2
- Date: Sat, 23 Dec 2023 22:37:54 GMT
- Title: FairIF: Boosting Fairness in Deep Learning via Influence Functions with
Validation Set Sensitive Attributes
- Authors: Haonan Wang, Ziwei Wu, Jingrui He
- Abstract summary: We propose a two-stage training algorithm named FAIRIF.
It minimizes the loss over the reweighted data set where the sample weights are computed.
We show that FAIRIF yields models with better fairness-utility trade-offs against various types of bias.
- Score: 51.02407217197623
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Most fair machine learning methods either highly rely on the sensitive
information of the training samples or require a large modification on the
target models, which hinders their practical application. To address this
issue, we propose a two-stage training algorithm named FAIRIF. It minimizes the
loss over the reweighted data set (second stage) where the sample weights are
computed to balance the model performance across different demographic groups
(first stage). FAIRIF can be applied on a wide range of models trained by
stochastic gradient descent without changing the model, while only requiring
group annotations on a small validation set to compute sample weights.
Theoretically, we show that, in the classification setting, three notions of
disparity among different groups can be mitigated by training with the weights.
Experiments on synthetic data sets demonstrate that FAIRIF yields models with
better fairness-utility trade-offs against various types of bias; and on
real-world data sets, we show the effectiveness and scalability of FAIRIF.
Moreover, as evidenced by the experiments with pretrained models, FAIRIF is
able to alleviate the unfairness issue of pretrained models without hurting
their performance.
Related papers
- BMFT: Achieving Fairness via Bias-based Weight Masking Fine-tuning [17.857930204697983]
Bias-based Weight Masking Fine-Tuning (BMFT) is a novel post-processing method that enhances the fairness of a trained model in significantly fewer epochs.
BMFT produces a mask over model parameters, which efficiently identifies the weights contributing the most towards biased predictions.
Experiments across four dermatological datasets and two sensitive attributes demonstrate that BMFT outperforms existing state-of-the-art (SOTA) techniques in both diagnostic accuracy and fairness metrics.
arXiv Detail & Related papers (2024-08-13T13:36:48Z) - Outlier Gradient Analysis: Efficiently Identifying Detrimental Training Samples for Deep Learning Models [36.05242956018461]
In this paper, we establish a bridge between identifying detrimental training samples via influence functions and outlier gradient detection.
We first validate the hypothesis of our proposed outlier gradient analysis approach on synthetic datasets.
We then demonstrate its effectiveness in detecting mislabeled samples in vision models and selecting data samples for improving performance of natural language processing transformer models.
arXiv Detail & Related papers (2024-05-06T21:34:46Z) - Secrets of RLHF in Large Language Models Part II: Reward Modeling [134.97964938009588]
We introduce a series of novel methods to mitigate the influence of incorrect and ambiguous preferences in the dataset.
We also introduce contrastive learning to enhance the ability of reward models to distinguish between chosen and rejected responses.
arXiv Detail & Related papers (2024-01-11T17:56:59Z) - Fair Few-shot Learning with Auxiliary Sets [53.30014767684218]
In many machine learning (ML) tasks, only very few labeled data samples can be collected, which can lead to inferior fairness performance.
In this paper, we define the fairness-aware learning task with limited training samples as the emphfair few-shot learning problem.
We devise a novel framework that accumulates fairness-aware knowledge across different meta-training tasks and then generalizes the learned knowledge to meta-test tasks.
arXiv Detail & Related papers (2023-08-28T06:31:37Z) - Non-Invasive Fairness in Learning through the Lens of Data Drift [88.37640805363317]
We show how to improve the fairness of Machine Learning models without altering the data or the learning algorithm.
We use a simple but key insight: the divergence of trends between different populations, and, consecutively, between a learned model and minority populations, is analogous to data drift.
We explore two strategies (model-splitting and reweighing) to resolve this drift, aiming to improve the overall conformance of models to the underlying data.
arXiv Detail & Related papers (2023-03-30T17:30:42Z) - FairAdaBN: Mitigating unfairness with adaptive batch normalization and
its application to dermatological disease classification [14.589159162086926]
We propose FairAdaBN, which makes batch normalization adaptive to sensitive attribute.
We propose a new metric, named Fairness-Accuracy Trade-off Efficiency (FATE), to compute normalized fairness improvement over accuracy drop.
Experiments on two dermatological datasets show that our proposed method outperforms other methods on fairness criteria and FATE.
arXiv Detail & Related papers (2023-03-15T02:22:07Z) - CMW-Net: Learning a Class-Aware Sample Weighting Mapping for Robust Deep
Learning [55.733193075728096]
Modern deep neural networks can easily overfit to biased training data containing corrupted labels or class imbalance.
Sample re-weighting methods are popularly used to alleviate this data bias issue.
We propose a meta-model capable of adaptively learning an explicit weighting scheme directly from data.
arXiv Detail & Related papers (2022-02-11T13:49:51Z) - FAIR: Fair Adversarial Instance Re-weighting [0.7829352305480285]
We propose a Fair Adrial Instance Re-weighting (FAIR) method, which uses adversarial training to learn instance weighting function that ensures fair predictions.
To the best of our knowledge, this is the first model that merges reweighting and adversarial approaches by means of a weighting function that can provide interpretable information about fairness of individual instances.
arXiv Detail & Related papers (2020-11-15T10:48:56Z) - On Adversarial Bias and the Robustness of Fair Machine Learning [11.584571002297217]
We show that giving the same importance to groups of different sizes and distributions, to counteract the effect of bias in training data, can be in conflict with robustness.
An adversary who can control sampling or labeling for a fraction of training data, can reduce the test accuracy significantly beyond what he can achieve on unconstrained models.
We analyze the robustness of fair machine learning through an empirical evaluation of attacks on multiple algorithms and benchmark datasets.
arXiv Detail & Related papers (2020-06-15T18:17:44Z) - Learning Diverse Representations for Fast Adaptation to Distribution
Shift [78.83747601814669]
We present a method for learning multiple models, incorporating an objective that pressures each to learn a distinct way to solve the task.
We demonstrate our framework's ability to facilitate rapid adaptation to distribution shift.
arXiv Detail & Related papers (2020-06-12T12:23:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.