Ternary unitary quantum lattice models and circuits in $2 + 1$
dimensions
- URL: http://arxiv.org/abs/2206.01499v1
- Date: Fri, 3 Jun 2022 10:53:49 GMT
- Title: Ternary unitary quantum lattice models and circuits in $2 + 1$
dimensions
- Authors: Richard Milbradt, Lisa Scheller, Christopher A{\ss}mus, Christian B.
Mendl
- Abstract summary: We extend the concept of dual unitary quantum gates to quantum lattice models in $2 + 1$ dimensions.
We study ternary unitary four-particle gates, which are unitary in time and both spatial dimensions.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We extend the concept of dual unitary quantum gates to quantum lattice models
in $2 + 1$ dimensions, by introducing and studying ternary unitary
four-particle gates, which are unitary in time and both spatial dimensions.
When used as building blocks of lattice models with periodic boundary
conditions in time and space (corresponding to infinite temperature states),
dynamical correlation functions exhibit a light-ray structure. We also
generalize solvable MPS to two spatial dimensions with cylindrical boundary
conditions, by showing that the analogous solvable PEPS can be identified with
matrix product unitaries. In the resulting tensor network for evaluating
equal-time correlation functions, the bulk ternary unitary gates cancel out. We
delineate and implement a numerical algorithm for computing such correlations
by contracting the remaining tensors.
Related papers
- KPZ scaling from the Krylov space [83.88591755871734]
Recently, a superdiffusion exhibiting the Kardar-Parisi-Zhang scaling in late-time correlators and autocorrelators has been reported.
Inspired by these results, we explore the KPZ scaling in correlation functions using their realization in the Krylov operator basis.
arXiv Detail & Related papers (2024-06-04T20:57:59Z) - Gaussian Entanglement Measure: Applications to Multipartite Entanglement
of Graph States and Bosonic Field Theory [50.24983453990065]
An entanglement measure based on the Fubini-Study metric has been recently introduced by Cocchiarella and co-workers.
We present the Gaussian Entanglement Measure (GEM), a generalization of geometric entanglement measure for multimode Gaussian states.
By providing a computable multipartite entanglement measure for systems with a large number of degrees of freedom, we show that our definition can be used to obtain insights into a free bosonic field theory.
arXiv Detail & Related papers (2024-01-31T15:50:50Z) - Quantum Ising model on two dimensional anti-de Sitter space [1.0377683220196874]
This paper investigates the transverse Ising model on a discretization of two-dimensional anti-de Sitter space.
We use classical and quantum algorithms to simulate real-time evolution and measure out-of-time-ordered correlators.
arXiv Detail & Related papers (2023-09-08T15:25:50Z) - Quantum Gate Generation in Two-Level Open Quantum Systems by Coherent
and Incoherent Photons Found with Gradient Search [77.34726150561087]
We consider an environment formed by incoherent photons as a resource for controlling open quantum systems via an incoherent control.
We exploit a coherent control in the Hamiltonian and an incoherent control in the dissipator which induces the time-dependent decoherence rates.
arXiv Detail & Related papers (2023-02-28T07:36:02Z) - Neural-Network Quantum States for Periodic Systems in Continuous Space [66.03977113919439]
We introduce a family of neural quantum states for the simulation of strongly interacting systems in the presence of periodicity.
For one-dimensional systems we find very precise estimations of the ground-state energies and the radial distribution functions of the particles.
In two dimensions we obtain good estimations of the ground-state energies, comparable to results obtained from more conventional methods.
arXiv Detail & Related papers (2021-12-22T15:27:30Z) - Two-dimensional $\mathbb{Z}_2$ lattice gauge theory on a near-term
quantum simulator: variational quantum optimization, confinement, and
topological order [0.0]
We propose an implementation of a two-dimensional $mathbbZ$ lattice gauge theory model on a shallow quantum circuit.
The ground state preparation is numerically analyzed on a small lattice with a variational quantum algorithm.
Our work shows that variational quantum algorithms provide a useful technique to be added in the growing toolbox for digital simulations of lattice gauge theories.
arXiv Detail & Related papers (2021-12-22T10:45:33Z) - Lattice Renormalization of Quantum Simulations [8.771066413050963]
We show that trotterized time-evolution operators can be related by analytic continuation to the Euclidean transfer matrix on an anisotropic lattice.
Based on the tools of Euclidean lattice field theory, we propose two schemes to determine Minkowski lattice spacings.
arXiv Detail & Related papers (2021-07-02T16:10:45Z) - Many Body Quantum Chaos and Dual Unitarity Round-a-Face [0.0]
We propose a new type of locally interacting quantum circuits which are generated by unitary interactions round-a-face (IRF)
We show how arbitrary dynamical correlation functions of local observables can be evaluated in terms of finite dimensional completely positive trace preserving unital maps.
We provide additional data on dimensionality of the chiral extension of DUBG circuits with distinct local Hilbert spaces of dimensions $dneq d'$ residing at even/odd lattice sites.
arXiv Detail & Related papers (2021-05-17T17:16:33Z) - Continuous and time-discrete non-Markovian system-reservoir
interactions: Dissipative coherent quantum feedback in Liouville space [62.997667081978825]
We investigate a quantum system simultaneously exposed to two structured reservoirs.
We employ a numerically exact quasi-2D tensor network combining both diagonal and off-diagonal system-reservoir interactions with a twofold memory for continuous and discrete retardation effects.
As a possible example, we study the non-Markovian interplay between discrete photonic feedback and structured acoustic phononovian modes, resulting in emerging inter-reservoir correlations and long-living population trapping within an initially-excited two-level system.
arXiv Detail & Related papers (2020-11-10T12:38:35Z) - Discontinuous Galerkin method with Voronoi partitioning for Quantum
Simulation of Chemistry [1.5301252700705212]
We extend the discontinuous Galerkin procedure to be applicable to molecular and crystalline systems of arbitrary geometry.
We investigate the performance, at the mean-field and correlated levels, with quasi-1D, 2D and 3D partitions using hydrogen chains, H$_4$, CH$_4$ as examples.
arXiv Detail & Related papers (2020-10-31T21:45:53Z) - Radiative topological biphoton states in modulated qubit arrays [105.54048699217668]
We study topological properties of bound pairs of photons in spatially-modulated qubit arrays coupled to a waveguide.
For open boundary condition, we find exotic topological bound-pair edge states with radiative losses.
By joining two structures with different spatial modulations, we find long-lived interface states which may have applications in storage and quantum information processing.
arXiv Detail & Related papers (2020-02-24T04:44:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.